Tumor Biology

, Volume 37, Issue 2, pp 2565–2573 | Cite as

Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells

  • Priya Samuel
  • Ryan Charles Pink
  • Daniel Paul Caley
  • James Michael Stevenson Currie
  • Susan Ann Brooks
  • David Raul Francisco CarterEmail author
Original Article


Ovarian cancers have a high mortality rate; this is in part due to resistance to the platinum-based compounds used in chemotherapy. In this paper, we assess the role of microRNA-31 in the development of chemoresistance to cisplatin. We used previous data from microarray experiments to identify potential microRNAs (miRNAs) involved in chemoresistance. The functional significance of these microRNAs was tested using miRNA mimics. We used RNA-seq to identify pathways and genes de-regulated in the resistant cell line and then determined their role using RNAi. Analysis of publically available datasets reveals the potential clinical significance. Our data show that miR-31 is increased, whilst potassium channel calcium activated large conductance subfamily M alpha, member 1 (KCNMA1), a subunit of calcium-regulated big potassium (BK) channels, is reduced in resistant ovarian cells. Over-expression of miR-31 increased resistance, as did knockdown of KCNMA1 or inhibition of BK channels. This suggests that these genes directly modulate cisplatin response. Our data also suggest that miR-31 represses KCNMA1 expression. Comparing the levels of miR-31 and KCNMA1 to cisplatin resistance in the NCI60 panel or chemoresistance in cohorts of ovarian cancer tumours reveals correlations that support a role for these genes in vitro and in vivo. Here we show that miR-31 and KCNMA1 are involved in mediating cisplatin resistance in ovarian cancer. Our data gives a new insight into the potential mechanisms to therapeutically target in cisplatin resistance common to ovarian cancer.


Ovarian cancer Cisplatin resistance miRNA miR-31 KCNMA1 BK channel 



We thank Tayyaba Sultana and Kate Wicks for technical assistance and members of the lab for critical reading of the manuscript and valuable discussions. We are grateful to Professor Robert Brown for his advice and technical assistance. DRFC RCP and DPC were kindly funded by Cancer and Polio Research Fund. PS, JMSC, SAB and DRFC were funded by Oxford Brookes University.

Conflicts of interest


Supplementary material

13277_2015_4081_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1183 kb)


  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  2. 2.
    Aletti G, Gallenberg M, Cliby W, Jatoi A, Hartmann L. Current management strategies for ovarian cancer. Mayo Clin Proc. 2007;82:751–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351:2519–29.CrossRefPubMedGoogle Scholar
  4. 4.
    Goff BA, Mandel L, Muntz HG, Melancon CH. Ovarian carcinoma diagnosis. Cancer. 2000;89:2068–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMedGoogle Scholar
  6. 6.
    Berkenblit A, Cannistra S. Advances in the management of epithelial ovarian cancer. J Reprod Med. 2005;50:426–38.PubMedGoogle Scholar
  7. 7.
    Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34:155–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol. 2001;67:93–130.CrossRefPubMedGoogle Scholar
  9. 9.
    Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science. 2013;340:82–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 2015;137:143–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Pors K, Plumb JA, Brown R, Teesdale-Spittle P, Searcey M, Smith PJ, et al. Development of nonsymmetrical 1,4-disubstituted anthraquinones that are potently active against cisplatin-resistant ovarian cancer cells. J Med Chem. 2005;48:6690–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Patnaik SK, Dahlgaard J, Mazin W, Kannisto E, Jensen T, Knudsen S, et al. Expression of microRNAs in the NCI-60 cancer cell-lines. PLoS One. 2012;7, e49918.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000;24:227–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.CrossRefGoogle Scholar
  18. 18.
    Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRefGoogle Scholar
  19. 19.
    Liang F, Schulte BA, Qu C, Hu W, Shen Z. Inhibition of the calcium- and voltage-dependent big conductance potassium channel ameliorates cisplatin-induced apoptosis in spiral ligament fibrocytes of the cochlea. Neuroscience. 2005;135:263–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Ziliak D, Gamazon ER, Lacroix B, Kyung Im H, Wen Y, Huang RS. Genetic variation that predicts platinum sensitivity reveals the role of miR-193b* in chemotherapeutic susceptibility. Mol Cancer Ther. 2012;11:2054–61.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dweep H, Sticht C, Pandey P, Gretz N. miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47.CrossRefPubMedGoogle Scholar
  22. 22.
    Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al. Cellminer: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72:3499–511.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Peters D, Freund J, Ochs RL. Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells. Mol Cancer Ther. 2005;4:1605–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Network CGAR. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRefGoogle Scholar
  25. 25.
    Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010;120:1298–309.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang T, Wang Q, Zhao D, Cui Y, Cao B, Guo L, et al. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond). 2011;121:437–47.CrossRefGoogle Scholar
  27. 27.
    Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κb pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21:121–35.CrossRefPubMedGoogle Scholar
  29. 29.
    Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010;1, e105.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase c {epsilon} (pkc{epsilon}). J Biol Chem. 2013;288:8750–61.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer. 2010;10:616.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7:921–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Sokolowski B, Orchard S, Harvey M, Sridhar S, Sakai Y. Conserved BK channel-protein interactions reveal signals relevant to cell death and survival. PLoS One. 2011;6, e28532.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, et al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene. 2007;26:2525–34.CrossRefPubMedGoogle Scholar
  35. 35.
    Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G, Obermann E, et al. Role of KCNMA1 in breast cancer. PLoS One. 2012;7, e41664.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cambien B, Rezzonico R, Vitale S, Rouzaire-Dubois B, Dubois JM, Barthel R, et al. Silencing of HSLO potassium channels in human osteosarcoma cells promotes tumorigenesis. Int J Cancer. 2008;123:365–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Partheen K, Levan K, Osterberg L, Horvath G. Expression analysis of stage III serous ovarian adenocarcinoma distinguishes a sub-group of survivors. Eur J Cancer. 2006;42:2846–54.CrossRefPubMedGoogle Scholar
  38. 38.
    Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ, Wilhelm-Benartzi CS, et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene. 2012;31:4567–76.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Priya Samuel
    • 1
  • Ryan Charles Pink
    • 1
  • Daniel Paul Caley
    • 1
    • 2
  • James Michael Stevenson Currie
    • 1
  • Susan Ann Brooks
    • 1
  • David Raul Francisco Carter
    • 1
    Email author
  1. 1.Department of Biological and Medical Sciences, Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
  2. 2.Genome Sciences CentreBritish Columbia Cancer AgencyVancouverCanada

Personalised recommendations