Tumor Biology

, Volume 37, Issue 2, pp 2395–2404 | Cite as

An orally administered DNA vaccine targeting vascular endothelial growth factor receptor-3 inhibits lung carcinoma growth

  • Yan Chen
  • Xin Liu
  • Cong Guo Jin
  • Yong Chun Zhou
  • Roya Navab
  • Kristine Raaby Jakobsen
  • Xiao Qun Chen
  • Jia Li
  • Ting Ting Li
  • Lu Luo
  • Xi Cai Wang
Original Article


Lung cancer is the leading cause of mortality and 5-year survival rate is very low worldwide. Recent studies show that vascular endothelial growth factor receptor-3 (VEGFR-3) signaling pathway contributes to lung cancer progression. So we hypothesize that an oral DNA vaccine that targets VEGFR-3 carried by attenuated Salmonella enterica serovar typhimurium strain SL3261 has impacts on lung cancer progression. In this study, the oral VEGFR-3-based vaccine-immunized mice showed appreciable inhibition of tumor growth and tumor lymphatic microvessels in lung cancer mice model. Moreover, the oral VEGFR-3-based vaccine-immunized mice showed remarkable increases in both VEGFR-3-specific antibody levels and cytotoxic activity. Furthermore, the oral VEGFR-3-based vaccine-immunized mice showed a significant increase in the levels of T helper type 1 (Th1) cell intracellular cytokine expression (IL-2, IFN-γ, and TNF-α). After inoculation with murine Lewis lung carcinoma (LLC) cells, CD4+ or CD8+ T cell numbers obviously declined in control groups whereas high levels were maintained in the oral VEGFR-3-based vaccine group. These results demonstrated that the oral VEGFR-3-based vaccine could induce specific humoral and cellular immune responses and then significantly inhibit lung carcinoma growth via suppressing lymphangiogenesis.


Lung cancer Lymphangiogenesis VEGFR-3 DNA vaccine Attenuated Salmonella enterica serovar Typhimurium 



This study was funded by grants from the National Natural Science Foundation of China (No. 81460358, No. 81060177, No. 81460441), the Joint Special Funds for the Department of Science and Technology of Yunnan Province-Kunming Medical University (No. 2012FB067), and the Yunnan Provincial Technology Project of Health (No. 2012WS0041, No. 2014NS024).

Compliance with ethical standards

Conflicts of interest


Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

13277_2015_4061_Fig7_ESM.gif (62 kb)
Fig. S1

The recombinant vector pcDNA3.1-VR-3 was successfully constructed, and verified by DNA sequencing and Western blotting. (a) DNA encoding VEGFR-3 extracellular domain was inserted into pcDNA3.1 vector between the restriction sites HindIII and XbaI and confirmed by DNA sequencing. DNA sequencing data showed that the recombinant gene matched the sequence in GenBank. (b) COS-7 cells were transiently transfected with the recombinant pcDNA3.1-VR-3 and the pcDNA3.1 empty vector respectively. Recombinant VEGFR-3 protein expression was confirmed by Western blotting in cell lysates at 24 h and 72 h after transfection. The protein appeared at approximately 180 kD. (GIF 61 kb)

13277_2015_4061_MOESM1_ESM.tif (6.9 mb)
High resolution image (TIFF 7068 kb)
13277_2015_4061_Fig8_ESM.gif (108 kb)
Fig. S2

Attenuated S. typhimurium SL3261 can infect macrophage cell line Ana-1 in vitro, and disseminate from the gut to other parts of body. (a) Fluorescence and optical microscopic images of Ana-1 cells in vitro co-incubated with EGFP-expressing SL3261 or negative control cells (NTC) without any treatment. 24 h after co-incubation, cells were detected by inverted fluorescence microscopy. Both panels, ×200 magnification. (b) C57BL/6 J mice were immunized 3 times at 2-weeks intervals by oral administration of 108 CFU of SL3261 harboring pEGFP-C2 or saline. Mice were sacrificed 4 h, 8 h or 96 h after the last immunization. The percentage of EGFP-expressing cells derived from small intestine, liver and spleen were detected by flow cytometry (n = 3 per time point). Error bars indicate S.D. (GIF 107 kb)

13277_2015_4061_MOESM2_ESM.tif (15.7 mb)
High resolution image (TIFF 16038 kb)


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.CrossRefPubMedGoogle Scholar
  2. 2.
    Lee WS, Pyun BJ, Kim SW, Shim SR, Nam JR, Yoo JY, et al. TTAC-0001, a human monoclonal antibody targeting VEGFR-2/KDR, blocks tumor angiogenesis. MAbs. 2015;7(5):957–68. doi: 10.1080/19420862.2015.1045168.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zuo SG, Chen Y, Wu ZP, Liu X, Liu C, Zhou YC, et al. Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis. Biol Pharm Bull. 2010;33(2):174–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012;484(7392):110–4. doi: 10.1038/nature10908.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou HJ, Chen X, Huang Q, Liu R, Zhang H, Wang Y, et al. AIP1 mediates vascular endothelial cell growth factor receptor-3-dependent angiogenic and lymphangiogenic responses. Arterioscler Thromb Vasc Biol. 2014;34(3):603–15. doi: 10.1161/ATVBAHA.113.303053.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell. 2006;9(3):209–23. doi: 10.1016/j.ccr.2006.02.018.CrossRefPubMedGoogle Scholar
  7. 7.
    Khromova N, Kopnin P, Rybko V, Kopnin BP. Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene. 2012;31(11):1389–97. doi: 10.1038/onc.2011.330.CrossRefPubMedGoogle Scholar
  8. 8.
    Varney ML, Singh RK. VEGF-C-VEGFR3/Flt4 axis regulates mammary tumor growth and metastasis in an autocrine manner. Am J Cancer Res. 2015;5(2):616–28.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang L, Zhou F, Han W, Shen B, Luo J, Shibuya M, et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010;20(12):1319–31. doi: 10.1038/cr.2010.116.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen F, Takenaka K, Ogawa E, Yanagihara K, Otake Y, Wada H, et al. Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(24):8548–53. doi: 10.1158/1078-0432.CCR-04-0950.CrossRefGoogle Scholar
  11. 11.
    Kojima H, Shijubo N, Yamada G, Ichimiya S, Abe S, Satoh M, et al. Clinical significance of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 in patients with T1 lung adenocarcinoma. Cancer. 2005;104(8):1668–77. doi: 10.1002/cncr.21366.CrossRefPubMedGoogle Scholar
  12. 12.
    Li J, Yi H, Liu Z, Zhang H, Zhang D, Yue W, et al. Association between VEGFR-3 expression and lymph node metastasis in non-small-cell lung cancer. Exp Ther Med. 2015;9(2):389–94. doi: 10.3892/etm.2014.2091.PubMedGoogle Scholar
  13. 13.
    Yang H, Kim C, Kim MJ, Schwendener RA, Alitalo K, Heston W, et al. Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer. 2011;10:36. doi: 10.1186/1476-4598-10-36.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Decio A, Taraboletti G, Patton V, Alzani R, Perego P, Fruscio R, et al. Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms. Am J Pathol. 2014;184(4):1050–61. doi: 10.1016/j.ajpath.2013.12.030.CrossRefPubMedGoogle Scholar
  15. 15.
    Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. MicroRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50(13):2336–50. doi: 10.1016/j.ejca.2014.06.005.CrossRefPubMedGoogle Scholar
  16. 16.
    Chang YW, Su CM, Su YH, Ho YS, Lai HH, Chen HA, et al. Novel peptides suppress VEGFR-3 activity and antagonize VEGFR-3-mediated oncogenic effects. Oncotarget. 2014;5(11):3823–35.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tiriveedhi V, Tucker N, Herndon J, Li L, Sturmoski M, Ellis M, et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(23):5964–75. doi: 10.1158/1078-0432.CCR-14-0059.CrossRefGoogle Scholar
  18. 18.
    Lowe DB, Shearer MH, Kennedy RC. DNA vaccines: successes and limitations in cancer and infectious disease. J Cell Biochem. 2006;98(2):235–42. doi: 10.1002/jcb.20775.CrossRefPubMedGoogle Scholar
  19. 19.
    Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouellec A. Live-attenuated bacteria as a cancer vaccine vector. Exp Rev Vaccines. 2013;12(10):1139–54. doi: 10.1586/14760584.2013.836914.CrossRefGoogle Scholar
  20. 20.
    Paterson Y, Guirnalda PD, Wood LM. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol. 2010;22(3):183–9. doi: 10.1016/j.smim.2010.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grille S, Moreno M, Bascuas T, Marques JM, Munoz N, Lens D, et al. Salmonella enterica serovar Typhimurium immunotherapy for B-cell lymphoma induces broad anti-tumour immunity with therapeutic effect. Immunology. 2014;143(3):428–37. doi: 10.1111/imm.12320.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Garmory HS, Griffin KF, Brown KA, Titball RW. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague. Vaccine. 2003;21(21–22):3051–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu XF, Hu JL, Quan QZ, Sun ZQ, Wang YJ, Qi F. Systemic immune responses to oral administration of recombinant attenuated Salmonella typhimurium expressing Helicobacter pylori urease in mice. World J Gastroenterol WJG. 2005;11(14):2154–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Jellbauer S, Panthel K, Hetrodt JH, Russmann H. CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PLoS One. 2012;7(4):e34214. doi: 10.1371/journal.pone.0034214.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xiong G, Husseiny MI, Song L, Erdreich-Epstein A, Shackleford GM, Seeger RC, et al. Novel cancer vaccine based on genes of Salmonella pathogenicity island 2. Int J Cancer J Int Cancer. 2010;126(11):2622–34. doi: 10.1002/ijc.24957.Google Scholar
  26. 26.
    Dong J, Yang J, Chen MQ, Wang XC, Wu ZP, Chen Y, et al. A comparative study of gene vaccines encoding different extracellular domains of the vascular endothelial growth factor receptor 2 in the mouse model of colon adenocarcinoma CT-26. Cancer Biol Ther. 2008;7(4):502–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Reisfeld RA, Niethammer AG, Luo Y, Xiang R. DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev. 2004;199:181–90. doi: 10.1111/j.0105-2896.2004.00137.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Yi AK, Yoon JG, Hong SC, Redford TW, Krieg AM. Lipopolysaccharide and CpG DNA synergize for tumor necrosis factor-alpha production through activation of NF-kappaB. Int Immunol. 2001;13(11):1391–404.CrossRefPubMedGoogle Scholar
  29. 29.
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80. doi: 10.1038/90609.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu X, Cai J, Huang J, Jiang X, Ren D. The treatment and prevention of mouse melanoma with an oral DNA vaccine carried by attenuated Salmonella typhimurium. J Immunother. 2010;33(5):453–60. doi: 10.1097/CJI.0b013e3181cf23a6.CrossRefPubMedGoogle Scholar
  31. 31.
    Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M, et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res. 2005;65(2):553–61.PubMedGoogle Scholar
  32. 32.
    Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002;8(12):1369–75. doi: 10.1038/nm794.CrossRefPubMedGoogle Scholar
  33. 33.
    Kurenova EV, Hunt DL, He D, Fu AD, Massoll NA, Golubovskaya VM, et al. Vascular endothelial growth factor receptor-3 promotes breast cancer cell proliferation, motility and survival in vitro and tumor formation in vivo. Cell Cycle. 2009;8(14):2266–80.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008;454(7204):656–60. doi: 10.1038/nature07083.CrossRefPubMedGoogle Scholar
  35. 35.
    Shimizu K, Kubo H, Yamaguchi K, Kawashima K, Ueda Y, Matsuo K, et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci. 2004;95(4):328–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Su JL, Chen PS, Chien MH, Chen PB, Chen YH, Lai CC, et al. Further evidence for expression and function of the VEGF-C/VEGFR-3 axis in cancer cells. Cancer Cell. 2008;13(6):557–60. doi: 10.1016/j.ccr.2008.04.021.CrossRefPubMedGoogle Scholar
  37. 37.
    Petrova TV, Bono P, Holnthoner W, Chesnes J, Pytowski B, Sihto H, et al. VEGFR-3 expression is restricted to blood and lymphatic vessels in solid tumors. Cancer Cell. 2008;13(6):554–6. doi: 10.1016/j.ccr.2008.04.022.CrossRefPubMedGoogle Scholar
  38. 38.
    Longatto Filho A, Martins A, Costa SM, Schmitt FC. VEGFR-3 expression in breast cancer tissue is not restricted to lymphatic vessels. Pathol Res Pract. 2005;201(2):93–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Bogos K, Renyi-Vamos F, Dobos J, Kenessey I, Tovari J, Timar J, et al. High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(5):1741–6. doi: 10.1158/1078-0432.CCR-08-1372.CrossRefGoogle Scholar
  40. 40.
    Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, et al. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 2015;15(4):2732–9. doi: 10.1021/acs.nanolett.5b00570.CrossRefPubMedGoogle Scholar
  41. 41.
    Nakashima H, Terabe M, Berzofsky JA, Husain SR, Puri RK. A novel combination immunotherapy for cancer by IL-13Ralpha2-targeted DNA vaccine and immunotoxin in murine tumor models. J Immunol. 2011;187(10):4935–46. doi: 10.4049/jimmunol.1102095.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Disis ML. Immune regulation of cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(29):4531–8. doi: 10.1200/JCO.2009.27.2146.CrossRefGoogle Scholar
  43. 43.
    Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev. 2013;252(1):164–82. doi: 10.1111/imr.12039.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yan Chen
    • 1
    • 2
    • 3
  • Xin Liu
    • 1
    • 2
    • 3
  • Cong Guo Jin
    • 1
    • 2
    • 3
  • Yong Chun Zhou
    • 1
    • 2
    • 3
  • Roya Navab
    • 4
  • Kristine Raaby Jakobsen
    • 5
  • Xiao Qun Chen
    • 1
    • 2
    • 3
  • Jia Li
    • 1
    • 2
    • 3
  • Ting Ting Li
    • 1
    • 2
    • 3
  • Lu Luo
    • 1
    • 2
    • 3
  • Xi Cai Wang
    • 1
    • 2
    • 3
  1. 1.Yunnan Tumor InstituteThe Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province)KunmingChina
  2. 2.Yunnan Tumor Molecular Biomarker Research CenterKunmingChina
  3. 3.Yunnan Zhan Qimin Academician WorkstationKunmingChina
  4. 4.Princess Margaret Cancer Center and Campbell Family Institute for Cancer ResearchUniversity Health NetworkTorontoCanada
  5. 5.Department of BiomedicineAarhus UniversityAarhusDenmark

Personalised recommendations