Tumor Biology

, Volume 36, Issue 10, pp 7339–7353 | Cite as

Myeloid-derived suppressor cells in B cell malignancies

  • Yaghoub Yazdani
  • Mousa Mohammadnia-Afrouzi
  • Mehdi Yousefi
  • Enayat Anvari
  • Ghasem Ghalamfarsa
  • Hadi Hasannia
  • Sanam Sadreddini
  • Farhad Jadidi-NiaraghEmail author


Tumor cells use several mechanisms such as soluble immune modulators or suppressive immune cells to evade from anti-tumor responses. Immunomodulatory cytokines, such as transforming growth factor-β, interleukin (IL)-10, and IL-35, soluble factors, such as adenosine, immunosuppressive cells, such as regulatory T cells, NKT cells and myeloid-derived suppressor cells (MDSCs), are the main orchestra leaders involved in immune suppression in cancer by which tumor cells can freely expand without immune cell-mediated interference. Among them, MDSCs have attracted much attention as they represent a heterogenous population derived from myeloid progenitors that are expanded in tumor condition and can also shift toward other myeloid cells, such as macrophages and dendritic cells, after tumor clearing. MDSCs exert their immunosuppressive effects through various immune and non-immune mechanisms which make them as potent tumor-promoting cells. Although, there are several studies regarding the immunobiology of MDSCs in different solid tumors, little is known about the precise characteristics of these cells in hematological malignancies, particularly B cell malignancies. In this review, we tried to clarify the precise role of MDSCs in B cell-derived malignancies.


B cell malignancies Lymphoma Leukemia Multiple myeloma Myeloid-derived suppressor cells Immune suppression 




Conflicts of interest



  1. 1.
    Bachireddy P, Burkhardt UE, Rajasagi M, Wu CJ. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat Rev Cancer. 2015;15:201–15.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wu AA, Drake V, Huang H-S, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyzing t cells. OncoImmunology 2015:00–00.Google Scholar
  3. 3.
    Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M, et al. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumor Biol 2015:1–16Google Scholar
  4. 4.
    Jadidi-Niaragh F, Yousefi M, Memarian A, Hojjat-Farsangi M, Khoshnoodi J, Razavi SM, et al. Increased frequency of CD8+ and CD4+ regulatory t cells in chronic lymphocytic leukemia: association with disease progression. Cancer Investig. 2013;31:121–31.CrossRefGoogle Scholar
  5. 5.
    Ghalamfarsa G, Hadinia A, Yousefi M, Jadidi-Niaragh F. The role of natural killer T cells in B cell malignancies. Tumor Biol. 2013;34:1349–60.CrossRefGoogle Scholar
  6. 6.
    Raggi C, Mousa H, Correnti M, Sica A, Invernizzi P. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 2015Google Scholar
  7. 7.
    Vetro C, Romano A, Ancora F, Coppolino F, Brundo MV, Raccuia SA, et al. Clinical impact of the immunome in lymphoid malignancies: the role of myeloid-derived suppressor cells. Frontiers in Oncology. 2015;5:104.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 2011;11:802–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Young MR, Newby M, Wepsic HT. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic lewis lung carcinoma tumors. Cancer Res. 1987;47:100–5.PubMedGoogle Scholar
  10. 10.
    Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells—an overview of combat strategies to increase immunotherapy efficacy. OncoImmunology. 2015;4, e954829.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    De Veirman K, Van Valckenborgh E, Lahmar Q, Geeraerts X, De Bruyne E, Menu E, et al. Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Frontiers in Oncology. 2014;4:349.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Younos IH, Abe F, Talmadge JE. Myeloid-derived suppressor cells: their role in the pathophysiology of hematologic malignancies and potential as therapeutic targets. Leuk Lymphoma. 2014;21:1–13.Google Scholar
  13. 13.
    Maenhout SK, Thielemans K, Aerts JL. Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. OncoImmunology. 2014;3, e956579.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Katoh H, Watanabe M. Myeloid-derived suppressor cells and therapeutic strategies in cancer. Mediat Inflamm. 2015;501:159269.Google Scholar
  15. 15.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Investig. 2006;116:2777.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Schouppe E, Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA. Modulation of CD8+ T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells. Immunobiology. 2013;218:1385–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Ma C, Kapanadze T, Gamrekelashvili J, Manns MP, Korangy F, Greten TF. Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 2012;92:1199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fleming T, Fleming M, Malek T. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol. 1993;151:2399–408.PubMedGoogle Scholar
  20. 20.
    Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010;22:238–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181:5791–802.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dolen Y, Gunaydin G, Esendagli G, Guc D. Granulocytic subset of myeloid derived suppressor cells in rats with mammary carcinoma. Cell Immunol. 2015;295:29–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, et al. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom. 2015;88:77–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 2010;40:22–35.PubMedCrossRefGoogle Scholar
  25. 25.
    Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40:2969–75.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Monu N, Frey AB. Suppression of proximal T cell receptor signaling and lytic function in CD8+ tumor-infiltrating T cells. Cancer Res. 2007;67:11447–54.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Trikha P, Carson WE. Signaling pathways involved in MDSC regulation. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2014;1846:55–65.CrossRefGoogle Scholar
  28. 28.
    Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and notch signaling as modulators of MDSC expansion. Int Immunopharmacol. 2011;11:808–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P. PGE2-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Investig. 2012;41:635–57.CrossRefGoogle Scholar
  30. 30.
    Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. The Journal of experimental medicine. 2005;202:931–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 2007;67:4507–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Donkor MK, Lahue E, Hoke TA, Shafer LR, Coskun U, Solheim JC, et al. Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol. 2009;9:937–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Irvine KM, Burns CJ, Wilks AF, Su S, Hume DA, Sweet MJ. A CSF-1 receptor kinase inhibitor targets effector functions and inhibits pro-inflammatory cytokine production from murine macrophage populations. FASEB J. 2006;20:1921–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou Z, French DL, Ma G, Eisenstein S, Chen Y, Divino CM, et al. Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells. 2010;28:620–32.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood. 2010;115:1461–71.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Martins A, Han J, Kim SO. The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB life. 2010;62:611–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004;64:6337–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH, Amankulor N, et al. Gm-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res. 2013;73:6413–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol. 1999;162:5728–37.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Abrams SI, Waight JD. Identification of a G-CSF-granulocytic mdsc axis that promotes tumor progression. OncoImmunology. 2012;1:550–1.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol. 2010;184:2281–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cai X-Y, Gommoll Jr CP, Justice L, Narula SK, Fine JS. Regulation of granulocyte colony-stimulating factor gene expression by interleukin-17. Immunol Lett. 1998;62:51–8.PubMedCrossRefGoogle Scholar
  43. 43.
    McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J, et al. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity. 2001;14:193–204.PubMedCrossRefGoogle Scholar
  44. 44.
    Schroeder T, Kohlhof H, Rieber N, Just U. Notch signaling induces multilineage myeloid differentiation and up-regulates PU.1 expression. J Immunol. 2003;170:5538–48.PubMedCrossRefGoogle Scholar
  45. 45.
    Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’hematopoiesis. Cytokine. 2008;42:277–88.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009;69:2506–13.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Waight JD, Hu Q, Miller A, Liu S, Abrams SI. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One. 2011;6, e27690.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nicholson SE, Oates AC, Harpur AG, Ziemiecki A, Wilks AF, Layton JE. Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc Natl Acad Sci. 1994;91:2985–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L, et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood. 2007;110:624–31.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Larrivée B, Pollet I, Karsan A. Activation of vascular endothelial growth factor receptor-2 in bone marrow leads to accumulation of myeloid cells: role of granulocyte-macrophage colony-stimulating factor. J Immunol. 2005;175:3015–24.PubMedCrossRefGoogle Scholar
  51. 51.
    Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92:4150–66.PubMedGoogle Scholar
  52. 52.
    Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111:4233–44.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhao J, Kong HJ, Li H, Huang B, Yang M, Zhu C, et al. IRF-8/interferon (IFN) consensus sequence-binding protein is involved in toll-like receptor (TLR) signaling and contributes to the cross-talk between TLR and IFN-γ signaling pathways. J Biol Chem. 2006;281:10073–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Ribechini E, Greifenberg V, Sandwick S, Lutz MB. Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol. 2010;199:273–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol. 2004;172:464–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 2005;65:9525–35.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005;11:1314–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37.PubMedCrossRefGoogle Scholar
  59. 59.
    Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182:5693–701.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of experimental medicine. 2008;205:2235–49.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Farren MR, Carlson LM, Lee KP. Tumor-mediated inhibition of dendritic cell differentiation is mediated by down regulation of protein kinase C beta II expression. Immunol Res. 2010;46:165–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity. 2010;32:790–802.PubMedCrossRefGoogle Scholar
  63. 63.
    Sander LE, Sackett SD, Dierssen U, Beraza N, Linke RP, Müller M, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. The Journal of experimental medicine. 2010;207:1453–64.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kusmartsev S, Gabrilovich DI. Stat1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 2005;174:4880–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010;70:3526–36.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol. 2003;170:270–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Terabe M, Matsui S, Park J-M, Mamura M, Noben-Trauth N, Donaldson DD, et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1D-restricted t cells block cytotoxic t lymphocyte-mediated tumor immunosurveillance abrogation prevents tumor recurrence. The Journal of experimental medicine. 2003;198:1741–52.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Munera V, Popovic PJ, Bryk J, Pribis J, Caba D, Matta BM, et al. Stat 6-dependent induction of myeloid derived suppressor cells after physical injury regulates nitric oxide response to endotoxin. Ann Surg. 2010;251:120–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, et al. MyD88-dependent expansion of an immature GR-1+ CD11B+ population induces T cell suppression and Th2 polarization in sepsis. The Journal of experimental medicine. 2007;204:1463–74.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14:408–19.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. The American journal of pathology. 2010;176:2490–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gibb DR, Saleem SJ, Kang D-J, Subler MA, Conrad DH. Adam10 overexpression shifts lympho-and myelopoiesis by dysregulating site 2/site 3 cleavage products of notch. J Immunol. 2011;186:4244–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res. 2015;93:1–10.PubMedCrossRefGoogle Scholar
  74. 74.
    Chandra D, Gravekamp C. Myeloid-derived suppressor cells: cellular missiles to target tumors. OncoImmunology. 2013;2, e26967.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Monu NR, Frey AB. Myeloid-derived suppressor cells and anti-tumor t cells: a complex relationship. Immunol Investig. 2012;41:595–613.CrossRefGoogle Scholar
  76. 76.
    Saio M, Radoja S, Marino M, Frey AB. Tumor-infiltrating macrophages induce apoptosis in activated CD8+ T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of tnf and nitric oxide. J Immunol. 2001;167:5583–93.PubMedCrossRefGoogle Scholar
  77. 77.
    Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4:941–52.PubMedCrossRefGoogle Scholar
  78. 78.
    Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother. 2004;53:64–72.PubMedCrossRefGoogle Scholar
  79. 79.
    Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70:68–77.PubMedCrossRefGoogle Scholar
  80. 80.
    Jitschin R, Braun M, Büttner M, Dettmer-Wilde K, Bricks J, Berger J, et al. CLL-cells induce idohi CD14+ HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote tregs. Blood. 2014;124:750–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate l-selectin expression on CD4+ and CD8+ T cells. J Immunol. 2009;183:937–44.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Raber P, Ochoa AC, Rodríguez PC. Metabolism of l-arginine by myeloid-derived suppressor cells in cancer: mechanisms of t cell suppression and therapeutic perspectives. Immunol Investig. 2012;41:614–34.CrossRefGoogle Scholar
  83. 83.
    Karakhanova S, Link J, Heinrich M, Shevchenko I, Yang Y, Hassenpflug M, et al. Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. OncoImmunology 2015:00–00Google Scholar
  84. 84.
    Heuvers ME, Muskens F, Bezemer K, Lambers M, Dingemans A-MC, Groen HJ, et al. Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of nsclc patients. Lung Cancer. 2013;81:468–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13:721s–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Zea AH, Rodriguez PC, Culotta KS, Hernandez CP, DeSalvo J, Ochoa JB, et al. l-arginine modulates CD3Ζ expression and t cell function in activated human T lymphocytes. Cell Immunol. 2004;232:21–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Rodriguez PC, Quiceno DG, Ochoa AC. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007;109:1568–73.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, et al. Immunity to cancer: attack and escape in T lymphocyte–tumor cell interaction. Immunol Rev. 2002;188:97–113.PubMedCrossRefGoogle Scholar
  89. 89.
    Harari O, Liao JK. Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des. 2004;10:893.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bannai S. Transport of cystine and cysteine in mammalian cells. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 1984;779:289–306.CrossRefGoogle Scholar
  91. 91.
    GMÜNDER H, ECK HP, DRÖGE W. Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem. 1991;201:113–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172:989–99.PubMedCrossRefGoogle Scholar
  93. 93.
    Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 2001;61:4756–60.PubMedGoogle Scholar
  94. 94.
    Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. l-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003;24:301–5.CrossRefGoogle Scholar
  95. 95.
    Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13:828–35.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nagaraj S, Schrum AG, Cho H-I, Celis E, Gabrilovich DI. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol. 2010;184:3106–16.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jayaraman P, Alfarano MG, Svider PF, Parikh F, Lu G, Kidwai S, et al. iNOS expression in CD4+ T cells limits treg induction by repressing TGFβ1: combined inos inhibition and Treg depletion unmask endogenous antitumor immunity. Clin Cancer Res. 2014;20:6439–51.PubMedCrossRefGoogle Scholar
  98. 98.
    Li Q, Pan P-Y, Gu P, Xu D, Chen S-H. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res. 2004;64:1130–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Mimura N, Hideshima T, Anderson KC. Novel therapeutic strategies for multiple myeloma. Experimental Hematology 2015Google Scholar
  100. 100.
    Asosingh K, Radl J, Van Riet I, Van Camp B, Vanderkerken K. The 5TMM series: a useful in vivo mouse model of human multiple myeloma. Hematol J. 2000;1:351–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Van Valckenborgh E, Schouppe E, Movahedi K, De Bruyne E, Menu E, De Baetselier P, et al. Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia. 2012;26:2424–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Sawant A, Ponnazhagan S. Myeloid-derived suppressor cells as a novel target for the control of osteolytic bone disease. OncoImmunology. 2013;2, e24064.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol. 2013;190:3815–23.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    De Veirman K, Van Ginderachter J, Lub S, De Beule N, Thielemans K, Bautmans I, et al. Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget. 2015;6:10532–47.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Brimnes MK, Vangsted AJ, Knudsen L, Gimsing P, Gang A, Johnsen HE, et al. Increased level of both CD4+ FOXP3+ regulatory T cells and CD14+ HLA− DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010;72:540–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Görgün GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, et al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013;121:2975–87.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Favaloro J, Liyadipitiya T, Brown R, Yang S, Suen H, Woodland N, et al. Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma. 2014;55:2893–900.PubMedCrossRefGoogle Scholar
  108. 108.
    Franssen L, van de Donk N, Emmelot M, Roeven M, Schaap N, Dolstra H, et al. The impact of circulating suppressor cells in multiple myeloma patients on clinical outcome of dlis. Bone Marrow Transplantation 2015Google Scholar
  109. 109.
    Zhang X-G, Bataille R, Jourdan M, Saeland S, Banchereau J, Mannoni P, et al. Granulocyte-macrophage colony-stimulating factor synergizes with interleukin-6 in supporting the proliferation of human myeloma cells [see comments]. Blood. 1990;76:2599–605.PubMedGoogle Scholar
  110. 110.
    Alexandrakis M, Passam F, Sfiridaki A, Pappa C, Moschandrea J, Kandidakis E, et al. Serum levels of leptin in multiple myeloma patients and its relation to angiogenic and inflammatory cytokines. The International journal of biological markers. 2003;19:52–7.CrossRefGoogle Scholar
  111. 111.
    Yazdani Y, Sadeghi H, Alimohammadian M, Andalib A, Moazen F, Rezaei A. Expression of an innate immune element (mouse hepcidin-1) in baculovirus expression system and the comparison of its function with synthetic human hepcidin-25. Iranian journal of pharmaceutical research: IJPR. 2011;10:559.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Yazdani Y, Keyhanvar N, Kalhor HR, Rezaei A. Functional analyses of recombinant mouse hepcidin-1 in cell culture and animal model. Biotechnol Lett. 2013;35:1191–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Javaheri-Kermani M, Farazmandfar T, Ajami A, Yazdani Y. Impact of hepcidin antimicrobial peptide on iron overload in tuberculosis patients. Scand J Infect Dis. 2014;46:693–6.PubMedCrossRefGoogle Scholar
  114. 114.
    De Keersmaecker B, Fostier K, Corthals J, Wilgenhof S, Heirman C, Aerts JL, et al. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother. 2014;63:1023–36.PubMedCrossRefGoogle Scholar
  115. 115.
    Busch A, Zeh D, Janzen V, Mügge LO, Wolf D, Fingerhut L, et al. Treatment with lenalidomide induces immunoactivating and counter-regulatory immunosuppressive changes in myeloma patients. Clinical & Experimental Immunology. 2014;177:439–53.CrossRefGoogle Scholar
  116. 116.
    Noonan KA, Ghosh N, Rudraraju L, Bui M, Borrello I. Targeting immune suppression with pde-5 inhibition in end stage multiple myeloma: a case study. Cancer Immunology Research 2014:canimm. 0213.2013Google Scholar
  117. 117.
    Wang Z, Zhang L, Wang H, Xiong S, Li Y, Tao Q, et al. Tumor-induced CD14+ HLA-DR−/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother. 2015;64:389–99.PubMedCrossRefGoogle Scholar
  118. 118.
    Gorgun G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, et al. Lenalidomide enhances immune checkpoint blockade induced immune response in multiple myeloma. Clinical Cancer Research 2015:clincanres. 0200.2015Google Scholar
  119. 119.
    Mehta-Shah N, Younes A. Novel targeted therapies in diffuse large B-cell lymphoma: seminars in hematology. Elsevier. 2015;52:126–37.Google Scholar
  120. 120.
    Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB. Immunosuppressive CD14+ HLA-DRLOW/− monocytes in B-cell non-Hodgkin lymphoma. Blood. 2011;117:872–81.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Porrata LF, Ristow K, Habermann TM, Ozsan N, Dogan A, Macon W, et al. Absolute monocyte/lymphocyte count prognostic score is independent of immunohistochemically determined cell of origin in predicting survival in diffuse large B-cell lymphoma. Leuk Lymphoma. 2012;53:2159–65.PubMedCrossRefGoogle Scholar
  122. 122.
    Wilcox R, Ristow K, Habermann T, Inwards D, Micallef I, Johnston P, et al. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia. 2011;25:1502–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Wilcox RA, Ristow K, Habermann TM, Inwards DJ, Micallef IN, Johnston PB, et al. The absolute monocyte count is associated with overall survival in patients newly diagnosed with follicular lymphoma. Leuk Lymphoma. 2012;53:575–80.PubMedCrossRefGoogle Scholar
  124. 124.
    Porrata LF, Ristow K, Habermann TM, Witzig TE, Colgan JP, Inwards DJ, et al. Peripheral blood lymphocyte/monocyte ratio at diagnosis and survival in nodular lymphocyte-predominant Hodgkin lymphoma. Br J Haematol. 2012;157:321–30.PubMedCrossRefGoogle Scholar
  125. 125.
    Tadmor T, Attias D, Polliack A. Myeloid-derived suppressor cells—their role in haemato-oncological malignancies and other cancers and possible implications for therapy. Br J Haematol. 2011;153:557–67.PubMedCrossRefGoogle Scholar
  126. 126.
    Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106:2169–74.PubMedCrossRefGoogle Scholar
  127. 127.
    Andjelic B, Mihaljevic B, Todorovic M, Bila J, Jakovic L, Jovanovic MP. The number of lymphoma-associated macrophages in tumor tissue is an independent prognostic factor in patients with follicular lymphoma. Appl Immunohistochem Mol Morphol. 2012;20:41–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F, et al. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol. 2008;26:440–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Vacca A, Ribatti D, Ruco L, Giacchetta F, Nico B, Quondamatteo F, et al. Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas. Br J Cancer. 1999;79:965.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ruan J, Hyjek E, Kermani P, Christos PJ, Hooper AT, Coleman M, et al. Magnitude of stromal hemangiogenesis correlates with histologic subtype of non-Hodgkin’s lymphoma. Clin Cancer Res. 2006;12:5622–31.PubMedCrossRefGoogle Scholar
  131. 131.
    Monestiroli S, Mancuso P, Burlini A, Pruneri G, Dell’Agnola C, Gobbi A, et al. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res. 2001;61:4341–4.PubMedGoogle Scholar
  132. 132.
    Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68:5439–49.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tadmor T, Fell R, Polliack A, Attias D. Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma—possible link with monocytic myeloid-derived suppressor cells. Hematol Oncol. 2013;31:65–71.PubMedCrossRefGoogle Scholar
  134. 134.
    Betting DJ, Hurvitz SA, Steward KK, Yamada RE, Kafi K, van Rooijen N, et al. Combination of cyclophosphamide, rituximab, and intratumoral cpg oligodeoxynucleotide successfully eradicates established B cell lymphoma. J Immunother. 2012;35:534–43.PubMedCrossRefGoogle Scholar
  135. 135.
    Gustafson MP, Lin Y, LaPlant B, Liwski CJ, Maas ML, League SC, et al. Immune monitoring using the predictive power of immune profiles. J ImmunoTher Cancer. 2013;1:7–18.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sakamaki I, Kwak L, Cha S, Yi Q, Lerman B, Chen J, et al. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia. 2014;28:329–37.PubMedCrossRefGoogle Scholar
  137. 137.
    Romano A, Parrinello NL, Vetro C, Forte S, Chiarenza A, Figuera A, et al. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol. 2015;168:689–700.PubMedCrossRefGoogle Scholar
  138. 138.
    Sato Y, Shimizu K, Shinga J, Hidaka M, Kawano F, Kakimi K, et al. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma. OncoImmunology. 2015;4, e995541.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Liu J, Zhou Y, Huang Q, Qiu L. CD14+ HLA-DRLOW/− expression: a novel prognostic factor in chronic lymphocytic leukemia. Oncology letters. 2015;9:1167–72.PubMedGoogle Scholar
  140. 140.
    Kennedy DE, Knight KL. Inhibition of b lymphopoiesis by adipocytes and il-1–producing myeloid-derived suppressor cells. J Immunol 2015:1500957Google Scholar
  141. 141.
    Green KA, Wang L, Noelle RJ, Green WR. Selective involvement of the checkpoint regulator vista in suppression of b-cell, but not T-cell, responsiveness by monocytic myeloid derived suppressor cells from mice infected by an immunodeficiency-causing retrovirus. J Virol. 2015;JVI:00888–15.Google Scholar
  142. 142.
    Li Y, Tu Z, Qian S, Fung JJ, Markowitz SD, Kusner LL, et al. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis. J Immunol. 2014;193:2127–34.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Green KA, Cook WJ, Green WR. Myeloid-derived suppressor cells in murine retrovirus-induced aids inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol. 2013;87:2058–71.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yaghoub Yazdani
    • 1
  • Mousa Mohammadnia-Afrouzi
    • 2
  • Mehdi Yousefi
    • 3
    • 4
  • Enayat Anvari
    • 5
  • Ghasem Ghalamfarsa
    • 6
  • Hadi Hasannia
    • 7
  • Sanam Sadreddini
    • 3
  • Farhad Jadidi-Niaragh
    • 7
    Email author
  1. 1.Infectious Diseases Research Center and Laboratory Science Research CenterGolestan University of Medical SciencesGorganIran
  2. 2.Department of Immunology and Microbiology, School of MedicineBabol University of Medical SciencesBabolIran
  3. 3.Immunology Research CenterTabriz University of Medical SciencesTabrizIran
  4. 4.Department of Immunology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
  5. 5.Department of Physiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
  6. 6.Cellular and Molecular Research CenterYasuj University of Medical SciencesYasujIran
  7. 7.Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran

Personalised recommendations