Tumor Biology

, Volume 37, Issue 2, pp 1781–1788 | Cite as

Circulating levels of the miRNAs, miR-194, and miR-29b, as clinically useful biomarkers for colorectal cancer

  • Gholam Basati
  • Amirnader Emami RazaviEmail author
  • Iraj Pakzad
  • Fardin Ali Malayeri
Original Article


The microRNAs (miRNAs), miR-194 and miR-29b, have been shown to downregulate in colorectal cancer (CRC) and may identify and classify CRC patients as compared with those in control subjects. In the current study, we aimed to explore whether the serum levels of the miRNAs could be potential biomarkers for diagnosis and prognosis of CRC. A quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was utilized to determine and compare serum levels of miR-194 and miR-29b in 55 patients with CRC and 55 control subjects. The correlations between levels of the miRNAs and clinicopathological stages of cancer were analyzed in patients. Receiver operating characteristic (ROC) curve and survival analyses were carried out, respectively, to determine diagnostic and prognostic values of the miRNAs. Serum levels of miR-194 and miR-29b were found to be significantly lower in CRC patients than those in control subjects (P < 0.0001). Moreover, serum levels of the miRNAs in patients were inversely correlated with the advanced TNM stages (P = 0.01). ROC curve and survival analyses revealed that reduced levels of the miRNAs could serve as diagnostic and prognostic biomarkers for patients with CRC (P = 0.0001). Serum levels of miR-194 and miR-29b may serve as potential biomarkers for diagnosis and prognosis of CRC.


Serum miR-194 miR-29b Colorectal cancer TNM staging qRT-PCR 



This study was funded by the Ilam University of Medical Sciences (grant number EC/92/H/136).

Conflicts of interest



  1. 1.
    Max Parkin D, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74.CrossRefPubMedGoogle Scholar
  2. 2.
    Narayanan V, Peppelenbosch MP, Konstantinov SR. Human fecal microbiome-based biomarkers for colorectal cancer. Cancer Prev Res. 2014;7(11):1108–11.CrossRefGoogle Scholar
  3. 3.
    Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J Sudbury Mass. 2012;18(3):244.CrossRefGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blanco-Calvo M, Calvo L, Figueroa A, Haz-Conde M, Antón-Aparicio L, Valladares-Ayerbes M. Circulating microRNAs: molecular microsensors in gastrointestinal cancer. Sensors. 2012;12(7):9349–62.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Selth L, Townley S, Bert A, Stricker P, Sutherland P, Horvath L, et al. Circulating microRNAs predict biochemical recurrence in prostate cancer patients. Br J Cancer. 2013;109(3):641–50.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhai H, Karaayvaz M, Dong P, Sakuragi N, Ju J. Prognostic significance of miR-194 in endometrial cancer. Biomark Res. 2013;1(12):10.1186.Google Scholar
  9. 9.
    White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol. 2011;186(3):1077–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Chiang Y, Song Y, Wang Z, Liu Z, Gao P, Liang J, et al. microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer. Exp Ther Med. 2012;3(3):560–6.PubMedGoogle Scholar
  11. 11.
    Zhao H-J, Ren L-L, Wang Z-H, Sun T-T, Yu Y-N, Wang Y-C, et al. MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway. Theranostics. 2014;4(12):1193.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xiao L, Rao JN, Zou T, Liu L, Cao S, Martindale JL, et al. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2. Mol Biol Cell. 2013;24(19):3038–46.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Poudyal D, Cui X, Le PM, Hofseth AB, Windust A, Nagarkatti M, et al. A key role of microRNA-29b for the suppression of colon cancer cell migration by American ginseng. PLoS One. 2013;8(10):e75034.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang K, Zhang C, Liu L, Zhou J. A key role of microRNA-29b in suppression of osteosarcoma cell proliferation and migration via modulation of VEGF. Int J Clinical Exp Pathol. 2014;7(9):5701.Google Scholar
  15. 15.
    Fleming I, Cooper J, Henson D, Hutter R, Kennedy B, Murphy G et al. American Joint Committee on Cancer. AJCC cancer staging manual. 5. Lippincott-Raven, Philadelphia; 1997.Google Scholar
  16. 16.
    Yamada A, Cox MA, Gaffney KA, Moreland A, Boland CR, Goel A. Technical factors involved in the measurement of circulating microRNA biomarkers for the detection of colorectal neoplasia. PLoS One. 2014;9(11):e112481.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402-8.Google Scholar
  18. 18.
    Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J, et al. MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer. 2011;10:99.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Khella HW, Bakhet M, Allo G, Jewett MA, Girgis AH, Latif A, et al. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis. 2013;34(10):2231–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Kahlert C, Lahes S, Radhakrishnan P, Dutta S, Mogler C, Herpel E, et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res. 2011;17(24):7654–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Polański R, Warburton HE, Ray-Sinha A, Devling T, Pakula H, Rubbi CP, et al. MDM2 promotes cell motility and invasiveness through a RING-finger independent mechanism. FEBS Lett. 2010;584(22):4695–702.CrossRefPubMedGoogle Scholar
  22. 22.
    Rose MG, Farrell MP, Schmitz JC. Thymidylate synthase: a critical target for cancer chemotherapy. Clin Colorectal Cancer. 2002;1(4):220–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, et al. Inducible expression of microRNA-194 is regulated by HNF-1α during intestinal epithelial cell differentiation. RNA. 2008;14(7):1433–42.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, et al. p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 2008;68(24):10094–104.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci. 2010;107(27):12210–5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg. 2009;33(4):698–709.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Mol Cancer Ther. 2012;11(5):1166–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26(42):6133–40.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Garzon R, Volinia S, Liu C-G, Fernandez-Cymering C, Palumbo T, Pichiorri F, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111(6):3183–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Akira Inoue, Hirofumi Yamamoto, Mamoru Uemura, Junichi Nishimura,Taishi Hata, Ichiro Takemasa, et al. MicroRNA-29b is a novel prognostic marker in colorectal cancer. Ann Surg Oncol. DOI 10.1245/s10434-014-4255-8Google Scholar
  31. 31.
    Zheng J, Yu F, Dong P, Bai Y, Chen B. Expression of miRNA-29b and its clinical significances in primary hepatic carcinoma. Zhonghua yi xue za zhi. 2013;93(12):888–91.PubMedGoogle Scholar
  32. 32.
    Wang Q, Huang Z, Ni S, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One. 2012;7:e44398.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang J, S-k H, Zhao M, Yang M, J-l Z, et al. Identification of a circulating microRNA signature for colorectal cancer detection. PLoS One. 2014;9(4):e87451. doi: 10.1371/journal.pone.0087451.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Gholam Basati
    • 1
  • Amirnader Emami Razavi
    • 2
    Email author
  • Iraj Pakzad
    • 3
  • Fardin Ali Malayeri
    • 4
  1. 1.Department of Clinical Biochemistry, Faculty of Allied Medical SciencesIlam University of Medical ScienceIlamIran
  2. 2.Iran National Tumor Bank, Cancer InstituteTehran University of Medical SciencesTehranIran
  3. 3.Department of Microbiology, Faculty of MedicineIlam University of Medical ScienceIlamIran
  4. 4.Department of Clinical Biochemistry, Faculty of MedicineZabol University of Medical SciencesZabolIran

Personalised recommendations