Advertisement

Tumor Biology

, Volume 36, Issue 9, pp 6653–6665 | Cite as

Breast cancer circulating biomarkers: advantages, drawbacks, and new insights

  • Andrea Ravelli
  • James M. Reuben
  • Francesco Lanza
  • Simone Anfossi
  • Maria Rosa Cappelletti
  • Laura Zanotti
  • Angela Gobbi
  • Chiara Senti
  • Paola Brambilla
  • Manuela Milani
  • Daniele Spada
  • Paolo Pedrazzoli
  • Massimo Martino
  • Alberto Bottini
  • Daniele GeneraliEmail author
  • on behalf of the Solid Tumor Working Party of European Blood and Marrow Transplantation Society (EBMT)
Review

Abstract

As of today, the level of individualization of cancer therapies has reached a level that 20 years ago would be considered visionary. However, most of the diagnostic, prognostic, and therapy-predictive procedures which aim to improve the overall level of personalization are based on the evaluation of tumor tissue samples, therefore requiring surgical operations with consequent low compliance for patients and high costs for the hospital. Hence, the research of a panel of circulating indicators which may serve as source of information about tumor characteristics and which may be obtainable by a simple withdrawal of peripheral blood today represents a growing field of interest. This review aims to objectively summarize the characteristics of the currently available breast cancer circulating biomarkers, also providing an overview about the multitude of novel potential soluble predictors which are still under evaluation. Specifically, the usefulness of a so-called “liquid biopsy” will be discussed in terms of improvements of diagnosis, prognosis, and therapy-prediction, but an overview will be given also on the potentiality of the molecular characterization arising from the isolation of circulating biomarkers and cells. Although this review will focus on the specific case of the breast, in the future liquid biopsies will hopefully be available for virtually any type of neoplasms.

Keywords

Breast cancer circulating biomarkers Breast cancer liquid biopsy Circulating DNA Circulating microRNA Circulating tumor cells Microvesicles and exosomes 

Notes

Conflicts of interest

None.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.CrossRefPubMedGoogle Scholar
  2. 2.
    Malvezzi M, Bertuccio P, Rosso T, Rota M, Levi F, La Vecchia C, et al. European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann Oncol : J Eur Soc Med Oncol / ESMO. 2015;26(4):779–86. doi: 10.1093/annonc/mdv001.CrossRefGoogle Scholar
  3. 3.
    Sharma K, Costas A, Shulman LN, Meara JG. A systematic review of barriers to breast cancer care in developing countries resulting in delayed patient presentation. J Oncol. 2012;2012:121873. doi: 10.1155/2012/121873.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Melichar B. Biomarkers in the treatment of cancer: opportunities and pitfalls. Clin Chem Lab Med. 2013;51(7):1329–33. doi: 10.1515/cclm-2013-0323.CrossRefPubMedGoogle Scholar
  5. 5.
    Duffy MJ, Evoy D, McDermott EW. CA 15-3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta. 2010;411(23-24):1869–74. doi: 10.1016/j.cca.2010.08.039.CrossRefPubMedGoogle Scholar
  6. 6.
    Hashimoto T, Matsubara F. Changes in the tumor marker concentration in female patients with hyper-, eu-, and hypothyroidism. Endocrinol Jpn. 1989;36(6):873–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brunner N, Chan DW, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem. 2008;54(12):e11–79. doi: 10.1373/clinchem.2008.105601.CrossRefPubMedGoogle Scholar
  8. 8.
    Duffy MJ, Duggan C, Keane R, Hill AD, McDermott E, Crown J, et al. High preoperative CA 15-3 concentrations predict adverse outcome in node-negative and node-positive breast cancer: study of 600 patients with histologically confirmed breast cancer. Clin Chem. 2004;50(3):559–63. doi: 10.1373/clinchem.2003.025288.CrossRefPubMedGoogle Scholar
  9. 9.
    Gion M, Boracchi P, Dittadi R, Biganzoli E, Peloso L, Mione R, et al. Prognostic role of serum CA15.3 in 362 node-negative breast cancers. An old player for a new game. Eur J Cancer. 2002;38(9):1181–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Trillet-Lenoir V, Freyer G. Advantage of using tumor markers in colorectal and breast cancers. Guidelines of the American Society of Clinical Oncology (ASCO). Bull Cancer. 1997;84(7):767–8.PubMedGoogle Scholar
  11. 11.
    Duffy MJ. Serum tumor markers in breast cancer: are they of clinical value? Clin Chem. 2006;52(3):345–51. doi: 10.1373/clinchem.2005.059832.CrossRefPubMedGoogle Scholar
  12. 12.
    Ebeling FG, Stieber P, Untch M, Nagel D, Konecny GE, Schmitt UM, et al. Serum CEA and CA 15-3 as prognostic factors in primary breast cancer. Br J Cancer. 2002;86(8):1217–22. doi: 10.1038/sj.bjc.6600248.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee JS, Park S, Park JM, Cho JH, Kim SI, Park BW. Elevated levels of preoperative CA 15-3 and CEA serum levels have independently poor prognostic significance in breast cancer. Ann Oncol : Off J Eur Soc Med Oncol / ESMO. 2013;24(5):1225–31. doi: 10.1093/annonc/mds604.CrossRefGoogle Scholar
  14. 14.
    Lee JS, Park S, Park JM, Cho JH, Kim SI, Park BW. Elevated levels of serum tumor markers CA 15-3 and CEA are prognostic factors for diagnosis of metastatic breast cancers. Breast Cancer Res Treat. 2013;141(3):477–84. doi: 10.1007/s10549-013-2695-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Bidard FC, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15(4):406–14. doi: 10.1016/S1470-2045(14)70069-5.CrossRefPubMedGoogle Scholar
  16. 16.
    Maly JJ, Macrae ER. Pertuzumab in combination with trastuzumab and chemotherapy in the treatment of HER2-positive metastatic breast cancer: safety, efficacy, and progression free survival. Breast Cancer (Auckl). 2014;8:81–8. doi: 10.4137/BCBCR.S9032.Google Scholar
  17. 17.
    Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008;358(13):1409–11. doi: 10.1056/NEJMc0801440.CrossRefPubMedGoogle Scholar
  18. 18.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56. doi: 10.5858/arpa.2013-0953-SA.CrossRefPubMedGoogle Scholar
  19. 19.
    Di Gioia D, Dresse M, Mayr D, Nagel D, Heinemann V, Stieber P. Serum HER2 in combination with CA 15-3 as a parameter for prognosis in patients with early breast cancer. Clin Chim Acta. 2015;440:16–22. doi: 10.1016/j.cca.2014.11.001.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhou J, Liu Y, Wang T, Zhang H, Du M, Zhang S, et al. Serum HER2 ECD level and its clinical significance in advanced breast cancer patients with different molecular subtypes. Zhonghua Yi Xue Za Zhi. 2014;94(18):1384–7.PubMedGoogle Scholar
  21. 21.
    Lee SB, Lee JW, Yu JH, Ko BS, Kim HJ, Son BH, et al. Preoperative serum HER2 extracellular domain levels in primary invasive breast cancer. BMC Cancer. 2014;14:929. doi: 10.1186/1471-2407-14-929.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lam L, McAndrew N, Yee M, Fu T, Tchou JC, Zhang H. Challenges in the clinical utility of the serum test for HER2 ECD. Biochim Biophys Acta. 2012;1826(1):199–208. doi: 10.1016/j.bbcan.2012.03.012.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Krawczyk N, Meier-Stiegen F, Banys M, Neubauer H, Ruckhaeberle E, Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. BioMed Res Int. 2014;2014:415721. doi: 10.1155/2014/415721.
  24. 24.
    Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res : BCR. 2009;11(4):R46. doi: 10.1186/bcr2333.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clinical Cancer Res : Off J Am Assoc Cancer Res. 2004;10(20):6897–904. doi: 10.1158/1078-0432.CCR-04-0378.CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91. doi: 10.1056/NEJMoa040766.CrossRefPubMedGoogle Scholar
  28. 28.
    Giuliano M, Giordano A, Jackson S, De Giorgi U, Mego M, Cohen EN, et al. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res : BCR. 2014;16(5):440. doi: 10.1186/s13058-014-0440-8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mego M, Giordano A, De Giorgi U, Masuda H, Hsu L, Giuliano M, et al. Circulating tumor cells in newly diagnosed inflammatory breast cancer. Breast Cancer Res : BCR. 2015;17(1):2. doi: 10.1186/s13058-014-0507-6.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhao S, Yang H, Zhang M, Zhang D, Liu Y, Liu Y, et al. Circulating tumor cells (CTCs) detected by triple-marker EpCAM, CK19, and hMAM RT-PCR and their relation to clinical outcome in metastatic breast cancer patients. Cell Biochem Biophys. 2013;65(2):263–73. doi: 10.1007/s12013-012-9426-2.CrossRefPubMedGoogle Scholar
  31. 31.
    Ma YC, Wang L, Yu FL. Recent advances and prospects in the isolation by size of epithelial tumor cells (ISET) methodology. Technol Cancer Res Treat. 2013;12(4):295–309. doi: 10.7785/tcrt.2012.500328.PubMedGoogle Scholar
  32. 32.
    Buim ME, Fanelli MF, Souza VS, Romero J, Abdallah EA, Mello CA et al. Detection of KRAS mutations in circulating tumor cells from patients with metastatic colorectal cancer. Cancer Biol Ther. 2015:1-7. doi: 10.1080/15384047.2015.1070991.
  33. 33.
    Peeters DJ, De Laere B, Van den Eynden GG, Van Laere SJ, Rothe F, Ignatiadis M, et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from Cell Search enriched blood samples using dielectrophoretic cell sorting. Br J Cancer. 2013;108(6):1358–67. doi: 10.1038/bjc.2013.92.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fabbri F, Carloni S, Zoli W, Ulivi P, Gallerani G, Fici P, et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013;335(1):225–31. doi: 10.1016/j.canlet.2013.02.015.CrossRefPubMedGoogle Scholar
  35. 35.
    Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903. doi: 10.1038/nm.3600.CrossRefPubMedGoogle Scholar
  36. 36.
    Carpenter EL, Rader J, Ruden J, Rappaport EF, Hunter KN, Hallberg PL, et al. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells. Front Oncol. 2014;4:201. doi: 10.3389/fonc.2014.00201.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fernandez SV, Bingham C, Fittipaldi P, Austin L, Palazzo J, Palmer G, et al. TP53 mutations detected in circulating tumor cells present in the blood of metastatic triple negative breast cancer patients. Breast Cancer Research : BCR. 2014;16(5):445. doi: 10.1186/s13058-014-0445-3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D, Nowaczyk P, et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol. 2012;41(4):1241–50. doi: 10.3892/ijo.2012.1557.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev. 1994;3(1):67–71.PubMedGoogle Scholar
  40. 40.
    Casciano I, Vinci AD, Banelli B, Brigati C, Forlani A, Allemanni G, et al. Circulating tumor nucleic acids: perspective in breast cancer. Breast Care. 2010;5(2):75–80. doi: 10.1159/000310113.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Leon SA, Revach M, Ehrlich GE, Adler R, Petersen V, Shapiro B. DNA in synovial fluid and the circulation of patients with arthritis. Arthritis Rheum. 1981;24(9):1142–50.CrossRefPubMedGoogle Scholar
  42. 42.
    Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem. 2000;46(3):319–23.PubMedGoogle Scholar
  43. 43.
    Atamaniuk J, Vidotto C, Tschan H, Bachl N, Stuhlmeier KM, Muller MM. Increased concentrations of cell-free plasma DNA after exhaustive exercise. Clin Chem. 2004;50(9):1668–70. doi: 10.1373/clinchem.2004.034553.CrossRefPubMedGoogle Scholar
  44. 44.
    Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer. 1983;51(11):2116–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Alix-Panabieres C, Pantel K. Real-time liquid biopsy: circulating tumor cells versus circulating tumor DNA. Ann Transl Med. 2013;1(2):18. doi: 10.3978/j.issn.2305-5839.2013.06.02.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–209. doi: 10.1056/NEJMoa1213261.CrossRefPubMedGoogle Scholar
  47. 47.
    Cristofanilli M, Fortina P. Circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;369(1):93. doi: 10.1056/NEJMc1306040#SA1.CrossRefPubMedGoogle Scholar
  48. 48.
    Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10(7):687–92.CrossRefPubMedGoogle Scholar
  49. 49.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58. doi: 10.1126/science.1235122.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kopreski MS, Benko FA, Borys DJ, Khan A, McGarrity TJ, Gocke CD. Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Natl Cancer Inst. 2000;92(11):918–23.CrossRefPubMedGoogle Scholar
  51. 51.
    Castells A, Puig P, Mora J, Boadas J, Boix L, Urgell E, et al. K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol : Off J Am Soc Clin Oncol. 1999;17(2):578–84.CrossRefGoogle Scholar
  52. 52.
    Kohler C, Barekati Z, Radpour R, Zhong XY. Cell-free DNA in the circulation as a potential cancer biomarker. Anticancer Res. 2011;31(8):2623–8.PubMedGoogle Scholar
  53. 53.
    Goessl C, Heicappell R, Munker R, Anker P, Stroun M, Krause H, et al. Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res. 1998;58(20):4728–32.PubMedGoogle Scholar
  54. 54.
    Silva JM, Dominguez G, Garcia JM, Gonzalez R, Villanueva MJ, Navarro F, et al. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res. 1999;59(13):3251–6.PubMedGoogle Scholar
  55. 55.
    Nicholas C, Turner IG-M, Schiavon G, Hrebien S, Osin P, Nerurkar A, et al. Tracking tumor-specific mutations in circulating-free DNA to predict early relapse after treatment of primary breast cancer. (suppl; abstr 511). J Clin Oncol. 2014;32(5s):2014.Google Scholar
  56. 56.
    Board RE, Wardley AM, Dixon JM, Armstrong AC, Howell S, Renshaw L, et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat. 2010;120(2):461–7. doi: 10.1007/s10549-010-0747-9.CrossRefPubMedGoogle Scholar
  57. 57.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6. doi: 10.1038/35002607.CrossRefPubMedGoogle Scholar
  58. 58.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  59. 59.
    Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4. doi: 10.1126/science.1149460.CrossRefPubMedGoogle Scholar
  60. 60.
    Ozgur A, Tutar L, Tutar Y. Regulation of heat shock proteins by miRNAs in human breast cancer. Microrna. 2014.Google Scholar
  61. 61.
    Fiorucci G, Chiantore MV, Mangino G, Percario ZA, Affabris E, Romeo G. Cancer regulator microRNA: potential relevance in diagnosis, prognosis and treatment of cancer. Curr Med Chem. 2012;19(4):461–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. doi: 10.1038/cr.2008.282.CrossRefPubMedGoogle Scholar
  63. 63.
    Chan M, Liaw CS, Ji SM, Tan HH, Wong CY, Thike AA, et al. Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res : Off J Am Assoc Cancer Res. 2013;19(16):4477–87. doi: 10.1158/1078-0432.CCR-12-3401.CrossRefGoogle Scholar
  64. 64.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8. doi: 10.1073/pnas.1019055108.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Cortez MA, Welsh JW, Calin GA. Circulating microRNAs as noninvasive biomarkers in breast cancer. Recent Results Cancer Res. 2012;195:151–61. doi: 10.1007/978-3-642-28160-0_13.CrossRefPubMedGoogle Scholar
  66. 66.
    Wu Q, Lu Z, Li H, Lu J, Guo L, Ge Q. Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol. 2011;2011:597145. doi: 10.1155/2011/597145.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kumar S, Keerthana R, Pazhanimuthu A, Perumal P. Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients. Indian J Biochem Biophys. 2013;50(3):210–4.PubMedGoogle Scholar
  68. 68.
    Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE. 2010;5(10):e13735. doi: 10.1371/journal.pone.0013735.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ng EK, Li R, Shin VY, Jin HC, Leung CP, Ma ES, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE. 2013;8(1):e53141. doi: 10.1371/journal.pone.0053141.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. doi: 10.1158/0008-5472.CAN-05-1783.CrossRefPubMedGoogle Scholar
  71. 71.
    Wang F, Zheng Z, Guo J, Ding X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol. 2010;119(3):586–93. doi: 10.1016/j.ygyno.2010.07.021.CrossRefPubMedGoogle Scholar
  72. 72.
    Chen W, Cai F, Zhang B, Barekati Z, Zhong XY. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol. 2013;34(1):455–62. doi: 10.1007/s13277-012-0570-5.CrossRefPubMedGoogle Scholar
  73. 73.
    Zheng R, Pan L, Gao J, Ye X, Chen L, Zhang X, et al. Prognostic value of miR-106b expression in breast cancer patients. J Surg Res. 2014. doi: 10.1016/j.jss.2014.12.035.Google Scholar
  74. 74.
    Igglezou M, Vareli K, Georgiou GK, Sainis I, Briasoulis E. Kinetics of circulating levels of miR-195, miR-155 and miR-21 in patients with breast cancer undergoing mastectomy. Anticancer Res. 2014;34(12):7443–7.PubMedGoogle Scholar
  75. 75.
    Sochor M, Basova P, Pesta M, Dusilkova N, Bartos J, Burda P, et al. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer. 2014;14:448. doi: 10.1186/1471-2407-14-448.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Park IH, Kang JH, Lee KS, Nam S, Ro J, Kim JH. Identification and clinical implications of circulating microRNAs for estrogen receptor-positive breast cancer. Tumour Biol. 2014;35(12):12173–80. doi: 10.1007/s13277-014-2525-5.CrossRefPubMedGoogle Scholar
  77. 77.
    Kleivi Sahlberg K, Bottai G, Naume B, Burwinkel B, Calin GA, Borresen-Dale A, et al. A serum microRNA signature predicts tumor relapse and survival in triple negative breast cancer patients. Clin Cancer Res : Off J Am Assoc Cancer Res. 2014. doi: 10.1158/1078-0432.CCR-14-2011.Google Scholar
  78. 78.
    Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, Pantel K, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5(20):9650–63.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Anfossi S, Giordano A, Gao H, Cohen EN, Tin S, Wu Q, et al. High serum miR-19a levels are associated with inflammatory breast cancer and are predictive of favorable clinical outcome in patients with metastatic HER2+ inflammatory breast cancer. PLoS ONE. 2014;9(1):e83113. doi: 10.1371/journal.pone.0083113.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Liu L, Nie J, Chen L, Dong G, Du X, Wu X, et al. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS ONE. 2013;8(2):e55532. doi: 10.1371/journal.pone.0055532.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Wang CH, Lee DY, Deng Z, Jeyapalan Z, Lee SC, Kahai S, et al. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE. 2008;3(6):e2420. doi: 10.1371/journal.pone.0002420.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kruger S, Abd Elmageed ZY, Hawke DH, Worner PM, Jansen DA, Abdel-Mageed AB, et al. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer. 2014;14:44. doi: 10.1186/1471-2407-14-44.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012;31(50):5162–71. doi: 10.1038/onc.2012.11.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9. doi: 10.1038/nm.2328.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Chawla A, Alatrash G, Wu Y, Mittendorf EA. Immune aspects of the breast tumor microenvironment. Breast Cancer Manag. 2013;2(3):231–44. doi: 10.2217/bmt.13.15.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Johnson LM, Price DK, Figg WD. Treatment-induced secretion of WNT16B promotes tumor growth and acquired resistance to chemotherapy: implications for potential use of inhibitors in cancer treatment. Cancer Biol Ther. 2013;14(2):90–1. doi: 10.4161/cbt.22636.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Brinton LT, Sloane HS, Kester M, Kelly KA. Formation and role of exosomes in cancer. Cell Mol Life Sci. 2015;72(4):659–71. doi: 10.1007/s00018-014-1764-3.CrossRefPubMedGoogle Scholar
  88. 88.
    Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(Pt 10):1603–11. doi: 10.1242/jcs.064386.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Katsuda T, Kosaka N, Ochiya T. The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics. 2014;14(4-5):412–25. doi: 10.1002/pmic.201300389.CrossRefPubMedGoogle Scholar
  90. 90.
    Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol : Off J Am Soc Clin Oncol. 2011;29(36):4828–36. doi: 10.1200/JCO.2011.38.0899.CrossRefGoogle Scholar
  91. 91.
    Dubsky PC, Curigliano G. Immunotherapy in breast cancer—towards a new understanding of both tumor and host. Breast Care. 2012;7(4):258–60. doi: 10.1159/000342629.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Carosella ED, Favier B, Rouas-Freiss N, Moreau P, Lemaoult J. Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood. 2008;111(10):4862–70. doi: 10.1182/blood-2007-12-127662.CrossRefPubMedGoogle Scholar
  93. 93.
    Curigliano G, Criscitiello C, Gelao L, Goldhirsch A. Molecular pathways: human leukocyte antigen G (HLA-G). Clin Cancer Res : Off J Am Assoc Cancer Res. 2013;19(20):5564–71. doi: 10.1158/1078-0432.CCR-12-3697.CrossRefGoogle Scholar
  94. 94.
    Kuppen JP, De Kruijf M. E. Considerations on the prognostic and predictive significance of HLA-G in breast cancer. Breast Cancer Manag. 2014;3(4):307–9.CrossRefGoogle Scholar
  95. 95.
    Denkert C. The immunogenicity of breast cancer—molecular subtypes matter. Ann Oncol: Off J Eur Soc Med Oncol / ESMO. 2014;25(8):1453–5. doi: 10.1093/annonc/mdu235.CrossRefGoogle Scholar
  96. 96.
    de Kruijf EM, Sajet A, van Nes JG, Natanov R, Putter H, Smit VT, et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol. 2010;185(12):7452–9. doi: 10.4049/jimmunol.1002629.CrossRefPubMedGoogle Scholar
  97. 97.
    Rizzo R, Campioni D, Stignani M, Melchiorri L, Bagnara GP, Bonsi L, et al. A functional role for soluble HLA-G antigens in immune modulation mediated by mesenchymal stromal cells. Cytotherapy. 2008;10(4):364–75. doi: 10.1080/14653240802105299.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Andrea Ravelli
    • 2
  • James M. Reuben
    • 5
  • Francesco Lanza
    • 2
  • Simone Anfossi
    • 5
  • Maria Rosa Cappelletti
    • 1
  • Laura Zanotti
    • 1
  • Angela Gobbi
    • 1
  • Chiara Senti
    • 1
  • Paola Brambilla
    • 2
  • Manuela Milani
    • 1
  • Daniele Spada
    • 1
  • Paolo Pedrazzoli
    • 4
  • Massimo Martino
    • 3
  • Alberto Bottini
    • 1
  • Daniele Generali
    • 1
    Email author
  • on behalf of the Solid Tumor Working Party of European Blood and Marrow Transplantation Society (EBMT)
  1. 1.U.O. Multidisciplinare di Patologia Mammaria, U.S. Terapia Molecolare e FarmacogenomicaAZ. Istituti Ospitalieri di CremonaCremonaItaly
  2. 2.U.O. Ematologia e CTMOAZ. Istituti Ospitalieri di CremonaCremonaItaly
  3. 3.U.O. Ematologia con Trapianto di Midollo Osseo e Terapia Intensiva, Dipartimento di OncologiaAZ. Ospedaliera Bianchi-Melacrino-MorelliReggio CalabriaItaly
  4. 4.S.C Oncologia, Dipartimento di Onco-EmatologiaPoliclinico IRCCS San MatteoPaviaItaly
  5. 5.Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations