Advertisement

Tumor Biology

, Volume 36, Issue 9, pp 6623–6631 | Cite as

Survivin splice variants and their diagnostic significance

  • Nand K. Sah
  • Chandrabhan Seniya
Review

Abstract

Survivin plays a crucial role in cell division particularly during the development of the fetus, in the onset and progression of most tumors and is found expressed in a few terminally differentiated cells. Altogether, there are ten splice variants of survivin, some of which are not yet satisfactorily characterized. Several isoforms may undergo homo/heterodimerization, particularly with the wild-type survivin to elicit a variety of biological functions. The detection of survivin and its splice variants not only suggests the onset, maintenance, and progression of cancer, but also the stage of certain cancers. Recent studies demonstrate that the presence of survivin in urine and blood samples of patients may suggest urogenital and bladder cancer hematologic malignancies, respectively. The expression of the survivin-3α splice variant is indicative of the onset and progression of breast cancer. Several companies have developed cancer diagnostic kits using survivin for detection of cancer. Some are also engaged in fine-tuning the type and stage-specific diagnosis of cancer based on survivin, its splice variants with and without other markers, such as hyaluronidase. Briefly, survivin and its splice variants hold a great biological significance, particularly in the diagnosis of cancer.

Keywords

Survivin Splice variants p53 Cancer Diagnosis 

References

  1. 1.
    Yoshida A, Zokumasu K, Wano Y, Yamauchi T, Imamura S, Takagi K, et al. Marked upregulation of Survivin and Aurora-B kinase is associated with disease progression in the myelodysplastic syndromes. Haematologia. 2012;97:1372–9.CrossRefGoogle Scholar
  2. 2.
    Altieri DC. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med. 2001;7:542–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3(8):917–1.CrossRefPubMedGoogle Scholar
  4. 4.
    Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer. 1993;3(1):46–4.CrossRefGoogle Scholar
  5. 5.
    Sah NK, Khan Z, Khan GJ, Bisen PS. Structural, functional and therapeutic biology of survivin. Cancer Lett. 2006;244:164–1.CrossRefPubMedGoogle Scholar
  6. 6.
    Caldas H, Fangusaro JR, Boue DR, Holloway MP, Altura RA. Dissecting the role of endothelial SURVIVIN DeltaEx3 in angiogenesis. Blood. 2007;109:1479–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Węsierska-Gądek J, Schmid G. Transcriptional repression of anti-apoptotic proteins mediated by the tumor suppressor protein p53. Cancer Ther. 2007;5:203–2.Google Scholar
  8. 8.
    Caldas H, Honsey L, Altura R. Survivin 2alpha: a novel survivin splice variant expressed in human malignancies. Mol Cancer. 2005;4(1):11.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tyner JW, Jemal AM, Thayer M, Druker BJ, Chang BH. Targeting survivin and p53 in pediatric acute lymphoblastic leukemia. Leukemia. 2012;26:623–2.CrossRefPubMedGoogle Scholar
  10. 10.
    Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998;58:5315–20.PubMedGoogle Scholar
  11. 11.
    Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry. 2001;40:1117–3.CrossRefPubMedGoogle Scholar
  12. 12.
    http://en.wikipedia.org/wiki/Survivin, accessed on 24 March, 2015.
  13. 13.
    Végran F, Boidot R, Oudin C, Defrain C, Rebucci M, Lizard-Nacol S. Association of p53 gene alterations with the expression of antiapoptotic survivin splice variants in breast cancer. Oncogene. 2007;26:290–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Knauer SK, Bier C, Schlag P, Fritzmann J, Dietmaier W, Rodel F, et al. The survivin isoform survivin 3B is cytoprotective and can function as a chromosome passenger complex. Cell Cycle. 2007;6:1502–9.PubMedGoogle Scholar
  15. 15.
    Mita AC, Mita MM, Nawrocki ST, Giles FJ. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res. 2008;14:5000–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Li F, Altieri DC. Transcriptional analysis of human survivin gene expression. Biochem J. 1999;344:305–1.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chu Y, Yao PY, Wang W, Wang D, Wang Z, Zhang L, et al. Aurora B kinase activation requires survivin priming phosphorylation by PLK1. J Mol Cell Biol. 2011;3:260–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Sally P, Wheatley, Henzing AJ, Dodson H, Khaled W, et al. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. JBC. 2004;279:5655–60.CrossRefGoogle Scholar
  19. 19.
    Suzuki A, Ito T, Kawano H, Hayashida M, Hayasaki Y, Tsutomi Y, et al. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene. 2000;19:1346–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Tang L, Ling X, Liu W, Das GM, Li F. Transcriptional inhibition of p21WAF1/CIP1 gene (CDKN1) expression by survivin is at least partially p53-dependent: evidence for survivin acting as a transcription factor or co-factor. Biochem Biophys Res Commun. 2012;421:249–4.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Serrano-Lopez J, Serrano J, Figueroa V, Torres-Gomez A, Tabares S, Casaño J, et al. Cytoplasmic localization of wild type survivin is associated to constitutive activation of PI3k/akt signaling pathway and represents a favorable prognostic factor in acute myeloid leukemia patients. Haematology. 2013;98(12):1877–5.CrossRefGoogle Scholar
  22. 22.
    Sah NK, Munshi A, Nishikawa T, Mukhopadhyay T, Roth JA, Meyn RE. Adenovirus-mediated wild-type p53 radiosensitizes human tumor cells by suppressing DNA repair capacity. Mol Cancer Ther. 2003;2(11):1223–1.PubMedGoogle Scholar
  23. 23.
    Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis. 2002;17(2):149–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Hwang SL, Hong YR, Sy WD, Chai CY, Lin HJ, Howng SL. Expression and mutation analysis of the p53 gene in astrocytoma. J Formos Med Assoc. 1999;98(1):31–8.PubMedGoogle Scholar
  25. 25.
    Ford JM, Hanawalt PC. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem. 1997;272(44):28073–80.CrossRefPubMedGoogle Scholar
  26. 26.
    Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6:909–23.CrossRefPubMedGoogle Scholar
  27. 27.
    Konduri SD, Medisetty R, Liu W, Kaipparettu BA, Srivastava P, Brauch H, et al. Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation. Proceed Natl Acad Sci. 2010;107(34):15081–6.CrossRefGoogle Scholar
  28. 28.
    Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene. 2002;21:2613–2.CrossRefPubMedGoogle Scholar
  29. 29.
    Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem. 2002;277:3247–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Biodot R, Vegran F, Lizard-Nacol S. Transcriptional regulation of the survivin gene. Mol Biol Rep. 2014;41:233–00.CrossRefGoogle Scholar
  31. 31.
    Wang Z, Fukuda S, Pelus L. Survivin regulates the P53 tumor suppressor gene family. Oncogene. 2004;23:8146–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhou M, Gu L, Li F, Zhu Y, Woods WG, Findley HW. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Pharmacol Exp Ther. 2002;303:124–1.CrossRefPubMedGoogle Scholar
  33. 33.
    Sah NK, Munshi A, Hobbs M, Carter BZ, Andreef M, Meyn RE. Effect of downregulation of survivin expression on radiosensitivity of human epidermoid carcinoma cells. Int J Radiat Oncol Biol Phys. 2006;66:852–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu N, Gu L, Findley HW, Li F, Zhou M. An alternatively spliced survivin variant is positively regulated by p53 and sensitizes leukemia cells to chemotherapy. Oncogene. 2004;23:7545–1.CrossRefPubMedGoogle Scholar
  35. 35.
    Badran A, Yoshida A, Ishikawa K, Goi T, Yamaguchi A, Ueda T, et al. Identification of a novel splice variant of the human anti-apoptosis gene survivin. Biochem Biophys Res Commun. 2004;314(3):902–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD. Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res. 1999;59:6097–02.PubMedGoogle Scholar
  37. 37.
    Mahotka C, Liebmann J, Wenzel M, Suschek CV, Schmitt M, Gabbert HE, et al. Differential subcellular localization of functionally divergent survivin splice variants. Cell Death Differ. 2002;9:1334–2.CrossRefPubMedGoogle Scholar
  38. 38.
    Caldas H, Jiang Y, Holloway MP, Fangusaro J, Mahotka C, Conway EM, et al. Survivin splice variants regulate the balance between proliferation and cell death. Oncogene. 2005;24:1994–07.CrossRefPubMedGoogle Scholar
  39. 39.
    Vietri MT, Cioffi M, Sessa M, Sica V, Molinari AM. Identification of a novel survivin splicing variant 3alpha in acute myeloid leukemia 2006. http://www.ncbi.nlm.nih.gov/nuccore/83744165. Accessed on 24th March 2015.
  40. 40.
    Li F, Ling X. Survivin study: an update of “What is the Next Wave?”. J Cell Physiol. 2010;208(3):476–6.CrossRefGoogle Scholar
  41. 41.
    Noton EA, Colnaghi R, Tate S, Starck C, Carvalho A, KoFerrigno P, et al. Molecular analysis of survivin isoforms: evidence that alternatively spliced variants do not play a role in mitosis. J Biol Chem. 2006;281:1286–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Mola G, Vela E, Fernández-Figueras MT, Isamat M, Muñoz-Mármol AM. Exonization of Alu-generated splice variants in the survivin gene of human and non-human primates. J Mol Biol. 2007;366:1055–3.CrossRefPubMedGoogle Scholar
  43. 43.
    Athanasoula KC, Gogas H, Polonifi K, Vaiopoulos AG, Polyzos A, Mantzourani M. Survivin beyond physiology: orchestration of multistep carcinogenesis and therapeutic potentials. Cancer Lett. 2014;347:175–2.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang HW, Sharp TV, Koumi A, Koentges G, Boshoff C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi’s sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J. 2002;21:2602–15.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Malcles M-H, Wang H-W, Koumi A, Tsai Y-H, Yu M, Godfrey A, et al. Characterisation of the anti-apoptotic function of survivin-ΔEx3 during TNFα-mediated cell death. Br J Cancer. 2007;96:1659–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ezziane Z. Molecular docking and analysis of survivin delta-Ex3 isoform protein. Open Med Chem J. 2008;2:16–20.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Espinosa M, Ceballos-Cancino G, Callaghan R, Maldonado V, Patiño N, Ruíz V, et al. Survivin isoform ∆Ex3 regulates tumor spheroid formation. Cancer Lett. 2012;318:61–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Lopergolo A, Tavecchio M, Lisanti S, Ghosh JC, Dohi T, Faversani A, et al. Chk2 phosphorylation of survivin-DeltaEx3 contributes to a DNA damage-sensing checkpoint in cancer. Cancer Res. 2012;72:3251–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vandghanooni S, Eskandani M, Montazeri V, Halimi M, Babaei E, Feizi MAH. Survivin-deltaEx3: a novel biomarker for diagnosis of papillary thyroid carcinoma. J Cancer Res Ther. 2011;7:25–30.Google Scholar
  50. 50.
    Vivas-Mejia PE, Rodriguez-Aguayo C, Han H-D, Shahzad MMK, Valiyeva F, Shibayama M, et al. Silencing survivin splice variant 2B leads to antitumor activity in taxane-resistant ovarian cancer. Clin Cancer Res. 2011;17:3716–6.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Végran F, Boidot R, Bonnetain F, Cadouot M, Chevrier S, Lizard-Nacol S. Apoptosis gene signature of survivin and its splice variant expression in breast carcinoma. Endocr-Relat Cancer. 2011;18:783–2.CrossRefPubMedGoogle Scholar
  52. 52.
    Shi K, An J, Jiang Q, Li F, Ci Y, Wu P, et al. Survivin 2B promotes autophagy by accumulating IKKalphain the nucleus of selenite-treated NB4 cells. Cell Death Dis. 2014;5:1071–80.CrossRefGoogle Scholar
  53. 53.
    Végran F, Mary R, Gibeaud A, Mirjolet C, Collin B, Oudot A, et al. Survivin-3B potentiates immune escape in cancer but also inhibits the toxicity of cancer chemotherapy. Cancer Res. 2013;73:5391–01.CrossRefPubMedGoogle Scholar
  54. 54.
    http://www.uniprot.org/uniprot/O15392#O15392-4. Accessed on 24th March 2015.
  55. 55.
    Huang Y, Chen X, Chen N, Nie L, Xu M, Zhou Q. Expression and prognostic significance of survivin splice variants in diffusely infiltrating astrocytoma. J Clin Pathol. 2011;64:953–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Javadhesari SM, Gharechahi J, Feizi MAH, Montazeri V, Halimi M. Transcriptional expression of survivin splice variants reveals differential expression of survivin-3α in breast cancer. Genet Test Mol Biomark. 2013;7:314–20.CrossRefGoogle Scholar
  57. 57.
    Zheng W, Ma X, Wei D, Wang T, Ma Y, Yang S. Molecular cloning and bioinformatics analysis of a novel spliced variant of survivin from human breast cancer cells. DNA Seq. 2005;16:321–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Wajapeyee N, Britto R, Ravishankar HM, Somasundaram K. Apoptosis induction by activator protein 2alpha involves transcriptional repression of Bcl-2. J Biol Chem. 2006;281:16207–19.CrossRefPubMedGoogle Scholar
  59. 59.
    Esteve PO, Chin HG, Pradhan S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci U S A. 2005;102:1000–5.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Necochea-Campion R, Chen C-S, Mirshahidi S, Howard FD, Wall NR. Clinico-pathologic relevance of Survivin splice variant expression in cancer. Cancer Lett. 2013;339:167–4.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    de Necochea-Campion R, Ghochikyan A, Josephs SF, Zacharias S, Woods E, Karimi-Busheri F, et al. Expression of the epigenetic factor BORIS (CTCFL) in the human genome. J Transl Med. 2011;9:213.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Vegran F, Boidot R, Oudin C, Defrain C, Rebucci M, Lizard-Nacol S. Association of p53 gene alterations with the expression of anti-apoptotic survivin splice variants in breast cancer. Oncogene. 2007;26:290–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479:74–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harbor Perspect Biol. 2011;3(7):a003707.Google Scholar
  65. 65.
    Hattori M, Sakamoto H, Satoh K, Yamamoto T. DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett. 2001;169:155–4.CrossRefPubMedGoogle Scholar
  66. 66.
    Yu J, Zhang H, Gu J, Lin S, Li J, Lu W, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer. 2004;4:65.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wagner M, Schmelz K, Dorken B, Tamm I. Epigenetic and genetic analysis of the survivin promoter in acute myeloid leukemia. Leuk Res. 2008;32:1054–00.CrossRefPubMedGoogle Scholar
  68. 68.
    Chen YK, Hsue SS, Lin LM. Survivin expression is regulated by an epigenetic mechanism for DMBA-induced hamster buccal-pouch squamous-cell carcinomas. Arch Oral Biol. 2005;50:593–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Tanaka C, Uzawa K, Shibahara T, Yokoe H, Noma H, Tanzawa H. Expression of an inhibitor of apoptosis, survivin, in oral carcinogenesis. J Dent Res. 2003;82:607–1.CrossRefPubMedGoogle Scholar
  70. 70.
    Truong LN, Hertel KJ, Brachmann RK. p53 interacts with the spliceosomal protein SAP145 and affects pre-mRNA processing. AACR Meet Abstr. 2005;2005:1086.Google Scholar
  71. 71.
    Span PN, Tjan-Heijnen VCG, Heuvel JJTM, de Kok JB, Foekens JA, Sweep FCGJ. Do the survivin (BIRC5) splice variants modulate or add to the prognostic value of total survivin in breast cancer? Clin Chem. 2006;52:1693–700.CrossRefPubMedGoogle Scholar
  72. 72.
    Span P, Tjan-Heijnen V, Manders P, van Tienoven D, Lehr J, Sweep F. High survivin predicts a poor response to endocrine therapy, but a good response to chemotherapy in advanced breast cancer. Breast Cancer Res Treat. 2006;98:223–30.CrossRefPubMedGoogle Scholar
  73. 73.
    Vandghanooni S, Eskandani M, Montazeri V, Halimi M, Babaei E, Feizi MA. Survivin-deltaEx3: a novel biomarker for diagnosis of papillary thyroid carcinoma. J Cancer Res Ther. 2011;7:325–30.CrossRefPubMedGoogle Scholar
  74. 74.
    Eissa S, Badr S, Barakat M, Zaghloul AS, Mohanad M. The diagnostic efficacy of urinary survivin and hyaluronidase mRNAs as urine markers in patients with bladder cancer. Clin Lab. 2013;59(7-8):893–00.PubMedGoogle Scholar
  75. 75.
    Altieri DC. Targeting survivin in cancer. Cancer Lett. 2013;332:225–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Mobahat M, Narendran A, Riabowol K. Survivin as a preferential target for cancer therapy. Int J Mol Sci. 2014;15:2494–16.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ciesielski MJ, Qui J, Fenstermaker RA. Survivin as a cancer vaccine target. J Vaccines Vaccin. 2014;5:230.Google Scholar
  78. 78.
    Chantalat L, Skoufias DA, Kleman J-P, Jung B, Dideberg O, Margolis RL. Crystal structure of human survivin reveals a bow tie-shaped dimer with unusual alpha helical extensions. Mol Cell. 2000;6:183–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Life Sciences (Botany)T. N. B. College, Bhagalpur (T M Bhagalpur University, Bhagalpur)BhagalpurIndia
  2. 2.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations