Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Approach for chemosensitization of cisplatin-resistant ovarian cancer by cucurbitacin B

Abstract

Ovarian cancer is the most deadly gynecological cancer. The first line in treatment is platinum-based drugs. However, most patients suffer from tumor recurrence, characterized by resistance to cisplatin. A plausible approach to address the tumor resistance is to co-administer the chemotherapeutic agents along with natural products to offer a synergistic effect and optimize the dosage regimen. Cucurbitacin B is a natural product and displays antitumor activity against a wide array of cancer cell lines. The aim of this work is to determine the antitumor activity against ovarian cancer cell line (A2780) and possible sensitization activity on cisplatin-resistant cell line (A2780CP) in 2D and 3D culture model. 3D spheroids were generated from A2780CP cell line. A2780, A2780CP, and the spheroids were treated with cucurbitacin B, cisplatin alone, or pretreated with cucurbitacin B followed by cisplatin. The viability, cell cycle, and apoptosis were analyzed. Level of ROS and total glutathione was measured. In this study, cucurbitacin B showed cytotoxicity against the ovarian cancer cell lines, and pretreatment of A2780CP cells leads to a significant increase in the cytotoxicity of cisplatin. The mechanism behind the sensitization effect was dependent in part on the depletion of the total glutathione, an increase in ROS through a decrease in the level of dual-specificity tyrosine-regulated kinase (Dyrk1B), decrease in pERK1/2 and pSTAT3 level. The viability of spheroids treated with a combination of cisplatin and cucurbitacin B were significantly decreased. The resulting data shows that cucurbitacin B is a promising chemosensitizer for the cisplatin-resistant ovarian cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

  2. 2.

    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49. doi:10.3322/caac.20006.

  3. 3.

    Iwanicki MP, Davidowitz RA, Ng MR, Besser A, Muranen T, Merritt M, et al. Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov. 2011;1(2):144–57. doi:10.1158/2159-8274.cd-11-0010.

  4. 4.

    Nederman T, Acker H, Carlsson J. Penetration of substances into tumor tissue: a methodological study with microelectrodes and cellular spheroids. In Vitro. 1983;19(6):479–88.

  5. 5.

    Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol. 2013;85(9):1219–26. doi:10.1016/j.bcp.2013.02.017.

  6. 6.

    Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol. 2007;63(1):12–31. doi:10.1016/j.critrevonc.2007.02.001.

  7. 7.

    Mercurio F, Manning AM. Multiple signals converging on NF-kappaB. Curr Opin Cell Biol. 1999;11(2):226–32.

  8. 8.

    Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3(3):221–7. doi:10.1038/ni0302-221.

  9. 9.

    Hua Y, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105. doi:10.1038/nrc1275.

  10. 10.

    Meinhold-Heerlein I, Bauerschlag D, Hilpert F, Dimitrov P, Sapinoso LM, Orlowska-Volk M, et al. Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene. 2005;24(6):1053–65. doi:10.1038/sj.onc.1208298.

  11. 11.

    Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, et al. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res. 2006;12(17):5055–63. doi:10.1158/1078-0432.ccr-06-0861.

  12. 12.

    Han Z, Feng J, Hong Z, Chen L, Li W, Liao S, et al. Silencing of the STAT3 signaling pathway reverses the inherent and induced chemoresistance of human ovarian cancer cells. Biochem Biophys Res Commun. 2013;435(2):188–94. doi:10.1016/j.bbrc.2013.04.087.

  13. 13.

    Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101(12):4667–79. doi:10.1182/blood-2002-12-3647.

  14. 14.

    Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58(11):621–31. doi:10.1080/15216540600957438.

  15. 15.

    Kim KY, Choi KC, Park SH, Auersperg N, Leung PC. Extracellular signal-regulated protein kinase, but not c-Jun N-terminal kinase, is activated by type II gonadotropin-releasing hormone involved in the inhibition of ovarian cancer cell proliferation. J Clin Endocrinol Metab. 2005;90(3):1670–7. doi:10.1210/jc.2004-1636.

  16. 16.

    Hayakawa J, Ohmichi M, Kurachi H, Ikegami H, Kimura A, Matsuoka T, et al. Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J Biol Chem. 1999;274(44):31648–54.

  17. 17.

    Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA, et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics. 2003;3(11):2085–90. doi:10.1002/pmic.200300591.

  18. 18.

    Bast Jr RC. Molecular approaches to personalizing management of ovarian cancer. Ann Oncol. 2011;22 Suppl 8:viii5–viii15. doi:10.1093/annonc/mdr516.

  19. 19.

    Hu J, Friedman E. Depleting mirk kinase increases cisplatin toxicity in ovarian cancer cells. Genes Cancer. 2010;1(8):803–11. doi:10.1177/1947601910377644.

  20. 20.

    Lai GM, Ozols RF, Young RC, Hamilton TC. Effect of glutathione on DNA repair in cisplatin-resistant human ovarian cancer cell lines. J Natl Cancer Inst. 1989;81(7):535–9.

  21. 21.

    Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75(2):241–51.

  22. 22.

    Chen X, Bao J, Guo J, Ding Q, Lu J, Huang M, et al. Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs. 2012;23(8):777–87. doi:10.1097/CAD.0b013e3283541384.

  23. 23.

    Alghasham AA. Cucurbitacins - a promising target for cancer therapy. Int J Health Sci. 2013;7(1):77–89.

  24. 24.

    Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep. 2005;22(3):386–99. doi:10.1039/b418841c.

  25. 25.

    Chen W, Leiter A, Yin D, Meiring M, Louw VJ, Koeffler HP. Cucurbitacin B inhibits growth, arrests the cell cycle, and potentiates antiproliferative efficacy of cisplatin in cutaneous squamous cell carcinoma cell lines. Int J Oncol. 2010;37(3):737–43.

  26. 26.

    Iwanski GB, Lee DH, En-Gal S, Doan NB, Castor B, Vogt M, et al. Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Br J Pharmacol. 2010;160(4):998–1007. doi:10.1111/j.1476-5381.2010.00741.x.

  27. 27.

    Lee DH, Thoennissen NH, Goff C, Iwanski GB, Forscher C, Doan NB, et al. Synergistic effect of low-dose cucurbitacin B and low-dose methotrexate for treatment of human osteosarcoma. Cancer Lett. 2011;306(2):161–70. doi:10.1016/j.canlet.2011.03.001.

  28. 28.

    Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4(3):309–24. doi:10.1038/nprot.2008.226.

  29. 29.

    Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136(3):473–8. doi:10.1039/c0an00609b.

  30. 30.

    Hamaguchi K, Godwin AK, Yakushiji M, O'Dwyer PJ, Ozols RF, Hamilton TC. Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res. 1993;53(21):5225–32.

  31. 31.

    Bartalis J, Halaweish FT. In vitro and QSAR studies of cucurbitacins on HepG2 and HSC-T6 liver cell lines. Bioorg Med Chem. 2011;19(8):2757–66. doi:10.1016/j.bmc.2011.01.037.

  32. 32.

    Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012:936486. doi:10.1155/2012/936486.

  33. 33.

    Chou TC, Martin N. CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 Values, ComboSyn Inc, Paramus, (NJ), 2005.

  34. 34.

    Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–32. doi:10.1038/nrm2952.

  35. 35.

    Tan L, Kwok RP, Shukla A, Kshirsagar M, Zhao L, Opipari Jr AW, et al. Trichostatin A restores Apaf-1 function in chemoresistant ovarian cancer cells. Cancer. 2011;117(4):784–94. doi:10.1002/cncr.25649.

  36. 36.

    Shen M, Feng Y, Gao C, Tao D, Hu J, Reed E, et al. Detection of Cyclin B1 Expression in G1-phase cancer cell lines and cancer tissues by postsorting western blot analysis. Cancer Res. 2004;64(5):1607–10. doi:10.1158/0008-5472.can-03-3321.

  37. 37.

    Zheng H, Hu W, Deavers MT, Shen D-Y, Fu S, Li Y-F, et al. Nuclear cyclin B1 is overexpressed in low-malignant-potential ovarian tumors but not in epithelial ovarian cancer. Am J Obstet Gynecol. 2009;201(4):367.e1-.e6. doi:10.1016/j.ajog.2009.05.021.

  38. 38.

    Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66. doi:10.1038/sj.onc.1203239.

  39. 39.

    Wang CY, Cusack Jr JC, Liu R, Baldwin Jr AS. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med. 1999;5(4):412–7. doi:10.1038/7410.

  40. 40.

    Annunziata CM, Stavnes HT, Kleinberg L, Berner A, Hernandez LF, Birrer MJ, et al. Nuclear factor kappaB transcription factors are coexpressed and convey a poor outcome in ovarian cancer. Cancer. 2010;116(13):3276–84. doi:10.1002/cncr.25190.

  41. 41.

    Jin HR, Jin X, Dat NT, Lee JJ. Cucurbitacin B suppresses the transactivation activity of RelA/p65. J Cell Biochem. 2011;112(6):1643–50. doi:10.1002/jcb.23078.

  42. 42.

    Chan KT, Li K, Liu SL, Chu KH, Toh M, Xie WD. Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway in leukemia cell line K562. Cancer Lett. 2010;289(1):46–52. doi:10.1016/j.canlet.2009.07.015.

  43. 43.

    Chan KT, Meng FY, Li Q, Ho CY, Lam TS, To Y, et al. Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett. 2010;294(1):118–24. doi:10.1016/j.canlet.2010.01.029.

  44. 44.

    Duangmano S, Sae-Lim P, Suksamrarn A, Patmasiriwat P, Domann FE. Cucurbitacin B causes increased radiation sensitivity of human breast cancer Cells via G2/M Cell Cycle Arrest. J Oncol. 2012;2012:601682. doi:10.1155/2012/601682.

  45. 45.

    Liu T, Peng H, Zhang M, Deng Y, Wu Z. Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin. Eur J Pharmacol. 2010;641(1):15–22. doi:10.1016/j.ejphar.2010.04.062.

  46. 46.

    Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific Proteolytic Cleavage of Poly(ADP-ribose) Polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53(17):3976–85.

  47. 47.

    Dantzer F, de la Rubia G, Ménissier-de Murcia J, Hostomsky Z, de Murcia G, Schreiber V. Base excision repair is impaired in mammalian cells lacking poly(adp-ribose) polymerase-1†. Biochemistry. 2000;39(25):7559–69. doi:10.1021/bi0003442.

  48. 48.

    Bowman KJ, Newell DR, Calvert AH, Curtin NJ. Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro. Br J Cancer. 2001;84(1):106.

  49. 49.

    Godoy H, Mhawech-Fauceglia P, Beck A, Miller A, Lele S, Odunsi K. Expression of poly (adenosine diphosphate-ribose) polymerase and p53 in epithelial ovarian cancer and their role in prognosis and disease outcome. Int J Gynecol Pathol: Off J Int Soc Gynecol Pathol. 2011;30(2):139–44. doi:10.1097/PGP.0b013e3181fa5a64.

  50. 50.

    Michels J, Vitale I, Galluzzi L, Adam J, Olaussen KA, Kepp O, et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 2013;73(7):2271–80. doi:10.1158/0008-5472.CAN-12-3000.

  51. 51.

    Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A. 1992;89(7):3070–4.

  52. 52.

    Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM. Glutathione levels in human tumors. Biomarkers. 2012;17(8):671–91. doi:10.3109/1354750X.2012.715672.

  53. 53.

    Andrews PA, Schiefer MA, Murphy MP, Howell SB. Enhanced potentiation of cisplatin cytotoxicity in human ovarian carcinoma cells by prolonged glutathione depletion. Chem Biol Interact. 1988;65(1):51–8.

  54. 54.

    Kausar H, Munagala R, Bansal SS, Aqil F, Vadhanam MV, Gupta RC. Cucurbitacin B potently suppresses non-small-cell lung cancer growth: identification of intracellular thiols as critical targets. Cancer Lett. 2013;332(1):35–45. doi:10.1016/j.canlet.2013.01.008.

  55. 55.

    Burleson K, Hansen L, Skubitz A. Ovarian carcinoma spheroids disseminate on type I collagen and invade live human mesothelial cell monolayers. Clin Exp Metastasis. 2005;21:685-697.

  56. 56.

    Durand R, Sutherland R. Effects of intercellular contact on repair of radiation damage. Exp Cell Res. 1972;71:75–80.

  57. 57.

    Filipovich I, Sorokina N, Robillard N, Chatal J. Radiation-induced apoptosis in human ovarian carcinoma cells growing as a monolayer and as multicell spheroids. Int J Cancer. 1997;72:851–9.

  58. 58.

    Graham C, Kobayashi H, Stankiewicz K, Man S, Kapitain S, Kerbel R. Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J Natl Cancer Inst. 1994;86:975–82.

  59. 59.

    Makhija S, Taylor D, Gibb R, Gercel-Taylor. Taxol-induced Bcl-2 phosphorylation in ovarian cancer cell monolayer and spheroids. Int J Oncol. 1999;14:515–21.

  60. 60.

    Bardies M, Thedrez P, Gestin J, Marcille B, Guerreau D, Faivre-Chauvet A, et al. Use of multi-cell spheroids of ovarian carcinoma as an intraperitoneal radio-immunotherapy model: uptake, retention kinetics and dosimetric evaluation. Int J Cancer. 1992;50:984–91.

  61. 61.

    Sutherland R, MacDonald H, Howell R. Multicellular spheroids: a new model target for in vitro studies of immunity to solid tumor allografts. J Natl Cancer Inst. 1977;58:1849–53.

  62. 62.

    Sutherland R, McCredie J, Inch W. Growth of multicell spheroids in tissue culture as a model of nodular carcinoma. J Natl Cancer Inst. 1971;46:113–20.

Download references

Acknowledgments

We would like to thank Lucas Kopel and Mahmoud Salama (Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD, USA). This work was supported by the Egyptian government via the Egyptian Ministry of Higher Education and Scientific Research.

Conflict of interest

None

Authors’ contributions

FE helped in the design of the study, carried out the research, and drafted the manuscript. FB, AE, and FH participated in the design and conceive of the study. SC helped in the design and revision of the draft. All authors read and approved the final manuscript.

Author information

Correspondence to Fathi Halaweish.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.30 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Senduny, F.F., Badria, F.A., EL-Waseef, A.M. et al. Approach for chemosensitization of cisplatin-resistant ovarian cancer by cucurbitacin B. Tumor Biol. 37, 685–698 (2016). https://doi.org/10.1007/s13277-015-3773-8

Download citation

Keywords

  • Ovarian cancer
  • Chemotherapy resistance
  • Cisplatin
  • Cucurbitacin B
  • Dyrk1B