Tumor Biology

, Volume 36, Issue 12, pp 9865–9871 | Cite as

RETRACTED ARTICLE: SUMO-specific protease 6 promotes gastric cancer cell growth via deSUMOylation of FoxM1

  • Jiu-Gang Song
  • Hua-Hong Xie
  • Nan Li
  • Kai Wu
  • Ji-gang Qiu
  • Da-Ming Shen
  • Chun-Jin Huang
Research Article


SUMOylation is a post-translational modification exerted various effects on the target proteins. SUMOylation is a highly dynamic and reversible process, which has been shown to play an important role in tumorigenesis. However, the roles of sentrin/SUMO-specific proteases (SENPs), which mediate the reverse process of SUMOylation, in tumorigenesis remains largely unexplored. Here, we uncover a critical role of SENP6 in promoting gastric cancer cells growth via regulating the deSUMOylation of a transcription factor forkhead box protein M1 (FoxM1). We demonstrated that the mRNA and protein levels were elevated in gastric cancer tissues. Overexpression of SENP6 promoted, while RNA interference depletion of endogenous SENP6 inhibited gastric cancer cells growth and the ability of colony formation. By using biochemical assays, we identified FoxM1 as a novel substrate of SENP6 in gastric cancer cells. Thus, our data suggest that SENP6, which is highly expressed in gastric cancer cells, regulates the transcriptional activity and stability of FoxM1 through deSUMOylation.


SUMOylation SENP6 FoxM1 Gastric cancer Cell growth 



We thank Dr. Liu at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences for providing FoxM1-TATA-luciferase reporter plasmid. This work was supported by grants from the National Natural Science Foundation of China (No. 81101852) and the National Health and Family Planning Commission of China (No. W2012FZ093).

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet. 2009;374:477–90.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Muller S, Ledl A, Schmidt D. Sumo: a regulator of gene expression and genome integrity. Oncogene. 2004;23:1998–2008.CrossRefPubMedGoogle Scholar
  4. 4.
    Bossis G, Melchior F. Sumo: regulating the regulator. Cell Div. 2006;1:13.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007;8:947–56.CrossRefPubMedGoogle Scholar
  6. 6.
    Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, et al. The sumo pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell. 2005;9:769–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Baek SH. A novel link between sumo modification and cancer metastasis. Cell Cycle. 2006;5:1492–5. Georgetown, Tex.CrossRefPubMedGoogle Scholar
  8. 8.
    Mukhopadhyay D, Dasso M. Modification in reverse: the sumo proteases. Trends Biochem Sci. 2007;32:286–95.CrossRefPubMedGoogle Scholar
  9. 9.
    Guo C, Henley JM. Wrestling with stress: roles of protein sumoylation and desumoylation in cell stress response. IUBMB Life. 2014;66:71–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Shen HJ, Zhu HY, Yang C, Ji F. Senp2 regulates hepatocellular carcinoma cell growth by modulating the stability of beta-catenin. Asian Pac J Cancer Prev. 2012;13:3583–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Qian J, Luo Y, Gu X, Wang X. Inhibition of senp6-induced radiosensitization of human hepatocellular carcinoma cells by blocking radiation-induced nf-kappab activation. Cancer Biother Radiopharm. 2013;28:196–200.CrossRefPubMedGoogle Scholar
  12. 12.
    Mukhopadhyay D, Ayaydin F, Kolli N, Tan SH, Anan T, Kametaka A, et al. Susp1 antagonizes formation of highly sumo2/3-conjugated species. J Cell Biol. 2006;174:939–49.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mukhopadhyay D, Arnaoutov A, Dasso M. The sumo protease senp6 is essential for inner kinetochore assembly. J Cell Biol. 2010;188:681–92.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dou H, Huang C, Singh M, Carpenter PB, Yeh ET. Regulation of DNA repair through desumoylation and sumoylation of replication protein a complex. Mol Cell. 2010;39:333–45.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hattersley N, Shen L, Jaffray EG, Hay RT. The sumo protease senp6 is a direct regulator of pml nuclear bodies. Mol Biol Cell. 2011;22:78–90.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rojas-Fernandez A, Plechanovova A, Hattersley N, Jaffray E, Tatham MH, Hay RT. Sumo chain-induced dimerization activates rnf4. Mol Cell. 2014;53:880–92.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wierstra I. The transcription factor foxm1 (forkhead box m1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res. 2013;118:97–398.CrossRefPubMedGoogle Scholar
  18. 18.
    Halasi M, Gartel AL. Fox (m1) news—it is cancer. Mol Cancer Ther. 2013;12:245–54.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xu XS, Miao RC, Wan Y, Zhang LQ, Qu K, Liu C. Foxm1 as a novel therapeutic target for cancer drug therapy. Asian Pac J Cancer Prev. 2015;16:23–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Xu N, Wu SD, Wang H, Wang Q, Bai CX. Involvement of foxm1 in non-small cell lung cancer recurrence. Asian Pac J Cancer Prev. 2012;13:4739–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH. Down-regulation of forkhead box m1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res. 2007;67:8293–300.CrossRefPubMedGoogle Scholar
  22. 22.
    Schimmel J, Eifler K, Sigurethsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, et al. Uncovering sumoylation dynamics during cell-cycle progression reveals foxm1 as a key mitotic sumo target protein. Mol Cell. 2014;53:1053–66.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang J, Yuan C, Wu J, Elsayed Z, Fu Z. Polo-like kinase 1-mediated phosphorylation of forkhead box protein m1b antagonizes its sumoylation and facilitates its mitotic function. J Biol Chem. 2015;290:3708–19.CrossRefPubMedGoogle Scholar
  24. 24.
    McDowall MD, Scott MS, Barton GJ. Pips: human protein-protein interaction prediction database. Nucleic Acids Res. 2009;37:D651–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Wierstra I, Alves J. Foxm1, a typical proliferation-associated transcription factor. Biol Chem. 2007;388:1257–74.PubMedGoogle Scholar
  26. 26.
    Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of foxm1 transcription factor: lessons from transgenic mouse models. Cell cycle. 2011;10:396–405. Georgetown, Tex.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Le Lay J, Kaestner KH. The fox genes in the liver: from organogenesis to functional integration. Physiol Rev. 2010;90:1–22.CrossRefPubMedGoogle Scholar
  28. 28.
    Chen W, Yuan K, Tao ZZ, Xiao BK. Deletion of forkhead box m1 transcription factor reduces malignancy in laryngeal squamous carcinoma cells. Asian Pac J Cancer Prev. 2011;12:1785–8.PubMedGoogle Scholar
  29. 29.
    Raychaudhuri P, Park HJ. Foxm1: a master regulator of tumor metastasis. Cancer Res. 2011;71:4329–33.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jiu-Gang Song
    • 1
  • Hua-Hong Xie
    • 2
  • Nan Li
    • 1
  • Kai Wu
    • 1
  • Ji-gang Qiu
    • 3
  • Da-Ming Shen
    • 3
  • Chun-Jin Huang
    • 3
  1. 1.Department of GastroenterologyThe 309th Hospital of Chinese People’s Liberation ArmyBeijingChina
  2. 2.State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’anChina
  3. 3.Department of General Surgery, Huadong HospitalFudan UniversityShanghaiChina

Personalised recommendations