Tumor Biology

, Volume 36, Issue 12, pp 9395–9403 | Cite as

miR-33a suppresses the nuclear translocation of β-catenin to enhance gemcitabine sensitivity in human pancreatic cancer cells

  • Chen Liang
  • Zhen Wang
  • Ying-Yi LiEmail author
  • Bao-Hua Yu
  • Fei Zhang
  • Hong-Yu LiEmail author
Research Article


Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, partly due to its high level of drug resistance. β-Catenin is critical for drug resistance in pancreatic cancer, which occurs through multiple mechanisms. Here, we observed that miR-33a targeted the 3′UTR of β-catenin, inducing apoptosis and inhibiting the growth of human pancreatic cancer cells. Moreover, gemcitabine (GEM) treatment enhanced β-catenin expression by reducing miR-33a expression in a dose-dependent manner. GEM-resistant MiaPaCa-2res cells with a low level of miR-33a expression and high level of β-catenin expression adopted spindle-shaped morphologies, similar to their morphologies during the epithelial-to-mesenchymal transition (EMT), and their normal morphologies were restored by miR-33a overexpression. Furthermore, miR-33a downregulated β-catenin nuclear translocation, decreasing the transcription of survivin, cyclin D1, and MDR-1, and the protein expression of slug, vimentin, and N-cadherin, thereby mediating sensitization to GEM. Thus, miR-33a might function as a tumor suppressor to downregulate β-catenin expression, affecting cell growth, apoptosis, the EMT, and GEM resistance.


miR-33a β-Catenin Chemoresistance Pancreatic cancer 



This work was supported in part by the National Science Foundation of China (NSFC) (30973476, 81272727, and 81472223).

Conflicts of interest


Open access

This article is distributed under the terms of the Creative Commons Attribution License, which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607–20.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363(9414):1049–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2',2'-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002;5(1):19–33.CrossRefPubMedGoogle Scholar
  5. 5.
    Andersson R, Aho U, Nilsson BI, Peters GJ, Pastor-Anglada M, Rasch W, et al. Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scand J Gastroenterol. 2009;44(7):782–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Liang C, Li YY. Use of regulators and inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy (Review). Mol Med Rep. 2014;9(6):2051–60.PubMedGoogle Scholar
  8. 8.
    Sun T, Kong X, Du Y, Li Z. Aberrant microRNAs in pancreatic cancer: researches and clinical implications. Gastroenterol Res Pract. 2014;2014:386561.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramirez CM, Chamorro-Jorganes A, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle. 2012;11(5):922–33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thomas M, Lange-Grunweller K, Weirauch U, Gutsch D, Aigner A, Grunweller A, et al. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene. 2012;31(7):918–28.CrossRefPubMedGoogle Scholar
  12. 12.
    Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71(15):5214–24.CrossRefPubMedGoogle Scholar
  13. 13.
    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.CrossRefPubMedGoogle Scholar
  14. 14.
    Verras M, Sun Z. Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett. 2006;237(1):22–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997;16(13):3797–804.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem. 1997;272(40):24735–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Huang M, Wang Y, Sun D, Zhu H, Yin Y, Zhang W, et al. Identification of genes regulated by Wnt/beta-catenin pathway and involved in apoptosis via microarray analysis. BMC Cancer. 2006;6:221.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xu W, Wang Z, Zhang W, Qian K, Li H, Kong D et al. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/beta-catenin signaling pathway. Cancer Lett. 2015;356(2 Pt B):613–27.Google Scholar
  19. 19.
    Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 2007;14(12):3629–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Sui H, Zhu L, Deng W, Li Q. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat. 2014;37(10):584–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, et al. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene. 2009;28(23):2245–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Nagano H, Tomimaru Y, Eguchi H, Hama N, Wada H, Kawamoto K, et al. MicroRNA-29a induces resistance to gemcitabine through the Wnt/beta-catenin signaling pathway in pancreatic cancer cells. Int J Oncol. 2013;43(4):1066–72.PubMedGoogle Scholar
  23. 23.
    Guo Q, Chen Y, Zhang B, Kang M, Xie Q, Wu Y. Potentiation of the effect of gemcitabine by emodin in pancreatic cancer is associated with survivin inhibition. Biochem Pharmacol. 2009;77(11):1674–83.Google Scholar
  24. 24.
    Zhang F, Liu B, Wang Z, Yu XJ, Ni QX, Yang WT, et al. A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol Cancer Res. 2013;11(12):1508–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Fang Y, Feng Y, Wu T, Srinivas S, Yang W, Fan J, et al. Aflatoxin B1 negatively regulates Wnt/beta-catenin signaling pathway through activating miR-33a. PLoS One. 2013;8(8):e73004.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Takeshita H, Shiozaki A, Bai XH, Iitaka D, Kim H, Yang BB, et al. XB130, a new adaptor protein, regulates expression of tumor suppressive microRNAs in cancer cells. PLoS One. 2013;8(3):e59057.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shi M, Huang W, Lin L, Zheng D, Zuo Q, Wang L, et al. Silencing of XB130 is associated with both the prognosis and chemosensitivity of gastric cancer. PLoS One. 2012;7(8):e41660.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhou Y, Huang Z, Wu S, Zang X, Liu M, Shi J. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res. 2014;33:12.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sarkar S, Mandal C, Sangwan R, Mandal C. Coupling G2/M arrest to the Wnt/beta-catenin pathway restrains pancreatic adenocarcinoma. Endocr Relat Cancer. 2014;21(1):113–25.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  2. 2.Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.Department of GastroenterologyGeneral Hospital of Shenyang Military AreaShenyangChina

Personalised recommendations