Tumor Biology

, Volume 36, Issue 11, pp 8925–8930 | Cite as

RETRACTED ARTICLE: Impairment of growth of gastric carcinoma by miR-133-mediated Her-2 inhibition

  • Xiao-Tao Zhang
  • Zhen Zhang
  • Yong-Ning Xin
  • Xue-Zhen Ma
  • Shi-Ying Xuan
Research Article

Abstract

Gastric carcinoma (GC) is a leading cause of cancer-related death in China. Dysregulation of microRNAs (miRNAs) has been shown to contribute to the development of GC, whereas the role of miR-133 in GC is unknown. Here, we analyzed the levels of miR-133 in GC tissues by reverse and quantitative transcription polymerase chain reaction (RT-qPCR). We overexpressed or inhibited miR-133 in GC cells. Cell growth was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell apoptosis was evaluated by fluorescence-activated cell sorting (FACS) analysis. Targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual-luciferase reporter assay. We detected lower miR-133 levels in GC tissues compared with normal gastric tissue. Moreover, the low miR-133 levels were correlated with low survival rate. Overexpression of miR-133 inhibited cell growth and promoted apoptosis, while depletion of miR-133 increased cell growth and suppressed apoptosis. Moreover, the 3′-untranslated region (3′UTR) of Her-2, the epidermal growth factor receptor (EGFR) that transduces cell growth signals, appeared to be targeted by miR-133. Together, these data suggest that reduced miR-133 levels in GC tissues promote GC growth, which possibly contributes to a low survival rate of GC patients. MiR-133 may target Her-2 to suppress GC cell growth.

Keywords

Gastric carcinoma (GC) MiR-133 MicroRNAs (miRNA) Growth Apoptosis Her-2 

Notes

Conflicts of interest

None

References

  1. 1.
    Zhao X, Li X, Yuan H. MicroRNAs in gastric cancer invasion and metastasis. Front Biosci. 2013;18:803–10.CrossRefGoogle Scholar
  2. 2.
    Liu G, Jiang C, Li D, Wang R, Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Mao D, Zhang Y, Lu H, Zhang H. Molecular basis underlying inhibition of metastasis of gastric cancer by anti-VEGFa treatment. Tumour Biol. 2014;35:8217–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Ye Y, Zhou X, Li X, Tang Y, Sun Y, Fang J. Inhibition of epidermal growth factor receptor signaling prohibits metastasis of gastric cancer via downregulation of MMP7 and MMP13. Tumour Biol. 2014;35:10891–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Di Leva G, Croce CM. Mirna profiling of cancer. Curr Opin Genet Dev. 2013;23:3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng Z, Liu F, Wang G, Li Y, Zhang H, Li F. MiR-133 is a key negative regulator of CDC42-PAK pathway in gastric cancer. Cell Signal. 2014;26:2667–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Li LP, Wu WJ, Sun DY, Xie ZY, Ma YC, Zhao YG. MiR-449a and CDK6 in gastric carcinoma. Oncol Lett. 2014;8:1533–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    John B, Sander C, Marks DS. Prediction of human microRNA targets. Methods Mol Biol. 2006;342:101–13.PubMedGoogle Scholar
  12. 12.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol. 2004;2:e363.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Coronnello C, Benos PV. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res. 2013;41:W159–64.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.CrossRefPubMedGoogle Scholar
  15. 15.
    Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG. MiRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res. 2007;35:D149–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T, Megraw M, et al. MiRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res. 2010;38:D137–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou Y, Wu D, Tao J, Qu P, Zhou Z, Hou J. MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol. 2013;47:423–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, et al. MicroRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep. 2012;27:1967–75.PubMedGoogle Scholar
  19. 19.
    Dong Y, Zhao J, Wu CW, Zhang L, Liu X, Kang W, et al. Tumor suppressor functions of miR-133a in colorectal cancer. Mol Cancer Res. 2013;11:1051–60.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xiao-Tao Zhang
    • 1
    • 2
  • Zhen Zhang
    • 2
  • Yong-Ning Xin
    • 1
    • 3
  • Xue-Zhen Ma
    • 2
  • Shi-Ying Xuan
    • 1
    • 3
  1. 1.College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
  2. 2.Qingdao Cancer HospitalQingdaoChina
  3. 3.Qingdao Municipal HospitalQingdaoChina

Personalised recommendations