Advertisement

Tumor Biology

, Volume 36, Issue 10, pp 7699–7710 | Cite as

In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth

  • L. LemaireEmail author
  • F. Franconi
  • B. Siegler
  • C. Legendre
  • E. Garcion
Research Article

Abstract

Hypoxia is a characteristic feature of solid tumors leading to the over expression of hypoxia-inducible factor (HIF)-1α protein and therefore to a specific cellular behavior. However, even though the oxygen tension in tumors is low (<5 %), most of the cell lines used in cancer studies are grown under 21 % oxygen tension. This work focuses on the impact of oxygen conditions during in vitro cell culture on glucose metabolism using 1-13C-glucose. Growing U87-MG glioma cells under hypoxic conditions leads to a two- to threefold reduction of labeled glutamine and an accumulation of fructose. However, under both hypoxic and normoxic conditions, glucose is used for de novo synthesis of pyrimidine since the 13C label is found both in the uracil and ribose moieties. Labeling of the ribose ring demonstrates that U87-MG glioma cells use the reversible branch of the non-oxidative pentose phosphate pathway. Interestingly, stereotactic implantation of U87-MG cells grown under normoxia or mild hypoxia within the striatum of nude mice led to differential growth; the cells grown under hypoxia retaining an imprint of the oxygen adaptation as their development is then slowed down.

Keywords

13C-Glucose NMR MRI U87-MG Glioblastoma Hypoxia Metabolism Fructose HIF-1α 

Abbreviations

HIF

Hypoxia-inducible factor

PFK1

Phosphofructokinase 1

VEGFA

Vascular endothelial growth factor A

CA9

Carbonic anhydrase 9

PDK1

Pyruvate dehydrogenase kinase

UPAR

Urokinase receptor

MMP2

Matrix metalloproteinase 2

VIM

Vimentin

OCT4

Octamer binding protein 4

HEPES

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

EDTA

Ethylenediaminetetraacetic acid

EGTA

Ethylene glycol tetraacetic acid

PMSF

Phenylmethylsulfonyl fluoride

DMEM

Dulbecco’s modified Eagle’s medium

FCS

Fetal calf serum

HBSS

Hank’s balanced salt solution

HMQC

Heteronuclear multiple quantum coherence

HMBC

Heteronuclear multiple bond correlation

RARE

Rapid acquisition with relaxation enhancement

Notes

Acknowledgments

The authors acknowledge financial support from “Comité Inter-Régional Grand Ouest de La Ligue Contre le Cancer”—CIRGO. We would like to thank Ms. S. Avril for her technical assistance in the blots, Mr. J. Cayon for his technical assistance in qPCR, and the members of the local animal facility for the housing and care provided for the animals. Dr. M.S.N. Carpenter post-edited the English style.

Conflicts of interest

None

References

  1. 1.
    Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18(4):243–59.CrossRefPubMedGoogle Scholar
  2. 2.
    Nordsmark M, Hoyer M, Keller J, Nielsen OS, Jensen OM, Overgaard J. The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 1996;35(4):701–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Selvendiran K, Bratasz A, Kuppusamy ML, Tazi MF, Rivera BK, Kuppusamy P. Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. Int J Cancer. 2009;125(9):2198–204.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pelicano H, Martin DS, Xu R-H, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633–46.CrossRefPubMedGoogle Scholar
  5. 5.
    Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19(1):12–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Chiche J, Le Fur Y, Vilmen C, Frassineti F, Daniel L, Halestrap AP, et al. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer. 2012;130:1511–20.CrossRefPubMedGoogle Scholar
  8. 8.
    Bourseau-Guilmain E, Lemaire L, Griveau A, Hervouet E, Vallette F, Berger F, et al. In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression. Int J Oncol. 2012;40(4):1220–9.PubMedGoogle Scholar
  9. 9.
    Yu C, Xue J, Zhu W, Jiao Y, Zhang S, Cao J. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumor Biol. 2015;36(1):81–94.CrossRefGoogle Scholar
  10. 10.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J. 2007;405(1):1–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Griffiths JR, McSheehy PM, Robinson SP, Troy H, Chung YL, Leek RD, et al. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): evidence of an anabolic role for the HIF-1 pathway. Cancer Res. 2002;62(3):688–95.PubMedGoogle Scholar
  13. 13.
    Stubbs M, Griffiths JR. The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Adv Enzyme Regul. 2010;50(1):44–55.CrossRefPubMedGoogle Scholar
  14. 14.
    Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard 3rd WA, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012;337(6097):975–80.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Marin-Valencia I, Cho SK, Rakheja D, Hatanpaa KJ, Kapur P, Mashima T, et al. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR Biomed. 2012;25(12):1177–86.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wise DR, Ward PS, Shay JES, Cross JR, Gruber JJ, Sacdeva UM, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108(49):19611–6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gameiro PA, Yang J, Metelo AM, Perez-Carro R, Baker R, Wang Z, et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 2013;17(3):372–85.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bouzier A-K, Goodwin R, Macouillard-Poulletier de Gannes F, Valeins H, Voisin P, Canioni P, et al. Compartmentation of lactate and glucose metabolism in C6 glioma cells. J Biol Chem. 1998;273(42):27162–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, et al. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed. 2012;25:1234–44.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lemaire L, Seguin F, Franconi F, Bon D, Pasco A, Boildieu N, et al. High resolution nuclear magnetic resonance investigation of metabolic disturbances induced by focal traumatic brain injury in a rat model: a pilot study. J Biomed Sci Eng. 2011;4:110–8.CrossRefGoogle Scholar
  21. 21.
    Madhu B, Dadulescu M, Griffiths JR. Artefacts in 1H NMR-based metabolomic studies on cell cultures. Magn Reson Mater Phys. 2014. doi: 10.1007/s10334-10014-10458-z.Google Scholar
  22. 22.
    Lundberg P, Vogel T, Malusek A, Lundquist P-O, Cohen L. MDL. The Magnetic Resonance Metabolomics Database (mdl.imv.liu.se). 22th Annual Meeting of the European Society for Magnetic Resonance in Medicine and Biology. Basel(Switzerland); 2005;S168.Google Scholar
  23. 23.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37(Database issue):D603–610.CrossRefPubMedGoogle Scholar
  24. 24.
    Lemaire L, Franconi F, Saint-Andre JP, Roullin VG, Jallet P, Le Jeune JJ. High-field quantitative transverse relaxation time, magnetization transfer and apparent water diffusion in experimental rat brain tumour. NMR Biomed. 2000;13(3):116–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2013;110(10):3919–24.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sullivan M, Galea P, Latif S. What is the appropriate oxygen tension for in vitro culture? Mol Hum Reprod. 2006;12(11):653.CrossRefPubMedGoogle Scholar
  27. 27.
    Erecinska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Resp Physiol. 2001;128(3):263–76.CrossRefGoogle Scholar
  28. 28.
    Wion D, Christen T, Barbier EL, Coles JA. PO(2) matters in stem cell culture. Cell Stem Cell. 2009;5(3):242–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Csete M. Oxygen in the cultivation of stem cells. Ann NY Acad Sci. 2005;1049:1–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol. 2007;72(1):29–39.CrossRefPubMedGoogle Scholar
  31. 31.
    Clavreul A, Guette C, Faguer R, Tetaud C, Boissard A, Lemaire L, et al. Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. J Pathol. 2014;233(1):74–88.CrossRefPubMedGoogle Scholar
  32. 32.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345–50.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    El-Ashmawy NE, El-Bahrawy HA, Shamloula MM. Biochemical/metabolic changes associated with hepatocellular carcinoma development in mice. Tumor Biol. 2014;35(6):5459–66.CrossRefGoogle Scholar
  34. 34.
    Ohka F, Ito M, Ranjit M, Senga T, Motomura A, Motomura K, et al. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumour Biol. 2014;35(6):5911–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H. Tumor cell metabolism: an integral view. Cancer Biol Ther. 2011;12(11):939–48.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 2000;18(3):326–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Shambaugh 3rd GE. Pyrimidine biosynthesis. Am J Clin Nutr. 1979;32(6):1290–7.PubMedGoogle Scholar
  39. 39.
    Wang JA, Zhang S, Li ZF, Yang J, Huang C, Liang RR, et al. H-1-NMR-based metabolomics of tumor tissue for the metabolic characterization of rat hepatocellular carcinoma formation and metastasis. Tumor Biol. 2011;32(1):223–31.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • L. Lemaire
    • 1
    • 2
    Email author
  • F. Franconi
    • 3
    • 4
  • B. Siegler
    • 4
  • C. Legendre
    • 1
    • 2
  • E. Garcion
    • 1
    • 2
  1. 1.INSERM U 1066‘Micro et Nanomédecines Biomimétiques - MINT’ IBS - CHUAngersFrance
  2. 2.LUNAM UniversitéUniversité Angers, UMR-S1066AngersFrance
  3. 3.PRIMEX, Université d’AngersLUNAM UniversitéAngersFrance
  4. 4.PIAM, Université d’AngersLUNAM UniversitéAngersFrance

Personalised recommendations