Advertisement

Tumor Biology

, Volume 36, Issue 10, pp 7473–7482 | Cite as

Japonicone A inhibits the growth of non-small cell lung cancer cells via mitochondria-mediated pathways

  • Yan Du
  • Jiannan Gong
  • Xinrui Tian
  • Xiaomei Yan
  • Tao Guo
  • Min Huang
  • Bingtai Zhang
  • Xiaoyun Hu
  • Hui Liu
  • Yinping Wang
  • Jianqiang LiEmail author
  • Maolan LiEmail author
Research Article

Abstract

Japonicone A, which is a natural product isolated from the aerial part of Inula japonica Thunb., has a wide range of clinical applications, including anti-inflammation and anti-oxidation. This study investigated the effects of japonicone A on the growth of non-small cell lung cancer (NSCLC) cell lines. The results showed that japonicone A significantly inhibited the growth of NSCLC cell lines in a dose- and time-dependent manner. This product also blocked cell cycle progression at S phase and induced mitochondrial-related apoptosis by upregulating Bax, cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP) protein levels and by downregulating Bcl-2, cyclin D1, CDC25A, and CDK2 protein levels. In vivo, japonicone A suppressed tumor growth via the same mechanism as that observed in vitro. In conclusion, our study is the first to report that japonicone A has an inhibitory effect on the growth of NSCLC cells, indicating that japonicone A administration is a potential therapeutic approach for future NSCLC treatments.

Keywords

Japonicone A Non-small cell lung cancer Apoptosis Cell cycle arrest Mitochondria-mediated pathways 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81402403), Shanghai Rising-Star Program (No. 15QA1403100), and the Natural Science Foundation of Shanxi Province (Nos. 20110313013-3 and 2014021037-3).

Conflicts of interest

None

References

  1. 1.
    Kumar MS, Armenteros-Monterroso E, East P, Chakravorty P, Matthews N, Winslow MM, et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature. 2014;505:212–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Al-Shahrabani F, Vallbohmer D, Angenendt S, Knoefel WT. Surgical strategies in the therapy of non-small cell lung cancer. World J of Clin Oncol. 2014;5:595–603.CrossRefGoogle Scholar
  3. 3.
    Xiong F, Jiang M, Huang Z, Chen M, Chen K, Zhou J, et al. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells. Integr Cancer Ther. 2014;13:152–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith SL, Palma D, Parhar T, Alexander CS, Wai ES. Inoperable early stage non-small cell lung cancer: comorbidity, patterns of care and survival. Lung Cancer. 2011;72:39–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Paz-Ares LG, Altug S, Vaury AT, Jaime JC, Russo F, Visseren-Grul C. Treatment rationale and study design for a phase III, double-blind, placebo-controlled study of maintenance pemetrexed plus best supportive care versus best supportive care immediately following induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small cell lung cancer. BMC Cancer. 2010;10:85.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Li X, Yang X, Liu Y, Gong N, Yao W, Chen P, et al. Japonicone A suppresses growth of Burkitt lymphoma cells through its effect on NF-kappaB. Clin Cancer Res. 2013;19:2917–28.CrossRefPubMedGoogle Scholar
  8. 8.
    Qin JJ, Jin HZ, Fu JJ, Hu XJ, Wang Y, Yan SK, et al. Japonicones A-D, bioactive dimeric sesquiterpenes from Inula japonica Thunb. Bioorg Med Chem Lett. 2009;19:710–3.CrossRefPubMedGoogle Scholar
  9. 9.
    Hu Z, Qin J, Zhang H, Wang D, Hua Y, Ding J, et al. Japonicone A antagonizes the activity of TNF-alpha by directly targeting this cytokine and selectively disrupting its interaction with TNF receptor-1. Biochem Pharmacol. 2012;84:1482–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Luscan A, Shackleford G, Masliah-Planchon J, Laurendeau I, Ortonne N, Varin J, et al. The activation of the WNT signaling pathway is a hallmark in neurofibromatosis type 1 tumorigenesis. Clin Cancer Res. 2014;20:358–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Li HH, Su JH, Chiu CC, Lin JJ, Yang ZY, Hwang WI, et al. Proteomic investigation of the sinulariolide-treated melanoma cells A375: effects on the cell apoptosis through mitochondrial-related pathway and activation of caspase cascade. Mar Drugs. 2013;11:2625–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chiou HL, Hsieh YS, Hsieh MR, Chen TY. HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway. Biochem Biophys Res Commun. 2006;345:453–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Xiang SS, Wang XA, Li HF, Shu YJ, Bao RF, Zhang F, et al. Schisandrin B induces apoptosis and cell cycle arrest of gallbladder cancer cells. Molecules. 2014;19:13235–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu JY, Liu Z, Wang DM, Li MM, Wang SX, Wang R, et al. Induction of apoptosis in K562 cells by dicyclohexylammonium salt of hyperforin through a mitochondrial-related pathway. Chem Biol Interact. 2011;190:91–101.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, et al. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules. 2014;19:11350–65.CrossRefPubMedGoogle Scholar
  16. 16.
    Xue C, Pasolli HA, Piscopo I, Gros DJ, Liu C, Chen Y, et al. Mitochondrial structure alteration in human prostate cancer cells upon initial interaction with a chemopreventive agent phenethyl isothiocyanate. Cancer Cell Int. 2014;14:30.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Choi BH, Kim W, Wang QC, Kim DC, Tan SN, Yong JW, et al. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett. 2008;261:37–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87:1157–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Vladimirov YA, Proskurnina EV, Alekseev AV. Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex. Biochemistry. 2013;78:1086–97.PubMedGoogle Scholar
  20. 20.
    Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Tsai JR, Chong IW, Chen YH, Hwang JJ, Yin WH, Chen HL, et al. Magnolol induces apoptosis via caspase-independent pathways in non-small cell lung cancer cells. Arch Pharm Res. 2014;37:548–57.CrossRefPubMedGoogle Scholar
  22. 22.
    Xu XY, Xia P, Yu M, Nie XC, Yang X, Xing YN, et al. The roles of REIC gene and its encoding product in gastric carcinoma. Cell Cycle. 2012;11:1414–31.CrossRefPubMedGoogle Scholar
  23. 23.
    Li X, Cheung KF, Ma X, Tian L, Zhao J, Go MY, et al. Epigenetic inactivation of paired box gene 5, a novel tumor suppressor gene, through direct upregulation of p53 is associated with prognosis in gastric cancer patients. Oncogene. 2012;31:3419–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Li M, Lu J, Zhang F, Li H, Zhang B, Wu X, et al. Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway. Cancer Lett. 2014;355:201–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yan Du
    • 1
  • Jiannan Gong
    • 1
  • Xinrui Tian
    • 1
  • Xiaomei Yan
    • 1
  • Tao Guo
    • 1
  • Min Huang
    • 1
  • Bingtai Zhang
    • 2
  • Xiaoyun Hu
    • 1
  • Hui Liu
    • 1
  • Yinping Wang
    • 1
  • Jianqiang Li
    • 1
    Email author
  • Maolan Li
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Respiratory MedicineShanxi Medical University Second HospitalTaiyuanChina
  2. 2.Department of General SurgeryShanxi Medical University Second HospitalTaiyuanChina
  3. 3.Department of General Surgery and Laboratory of General SurgeryXinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  4. 4.Institute of Biliary Tract DiseaseShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations