Skip to main content

Advertisement

Log in

K-Ras promotes the non-small lung cancer cells survival by cooperating with sirtuin 1 and p27 under ROS stimulation

  • Research Article
  • Published:
Tumor Biology

Abstract

Cigarette smoking might lead to lung cancer. However, the related signaling pathways at molecular level remained unknown until now. In this study, we studied the signaling processes associated between tobacco exposure and lung cancer. First, we detected and validated pathway-specific gene expression at bronchial epithelium. These proteins reflected the activation of signaling pathways relevant to tobacco exposure, including ATM, BCL2, GPX1, K-Ras, IKBKB, and SIRT1. Tobacco smoking was simulated via reactive oxygen species (ROS) pathway. ROS not only arrested cell cycle at G1/S stage but also increased expressions of Sirt1 and p27. Further studies showed that the expression of p27 was dependent on ERK1/2 activation, and p27 itself could halt cell cycle by inhibiting the activation of CDKs. Moreover, activation of K-Ras, the key regulator of Ras/ERK pathway, was tightly regulated by enzyme activity of Sirt1. Deacetylation of K-Ras by Sirt1 increased the transformation of Ras-GTP to Ras-GDP, promoting the activation of downstream of ERK1/2. In reverse, Ras/ERK pathway could also regulate Sirt1 transcription. In conclusion, inhibition of Sirt1 may be an effective strategy for the prevention of tumor progression in high-risk patients or as a therapeutic strategy in established tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shields PG. Molecular epidemiology of lung cancer. Ann Oncol Suppl. 1999;5:7–11.

    Article  Google Scholar 

  2. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995;270:296–9.

    Article  CAS  PubMed  Google Scholar 

  3. Bae YS, Kang SW, Seo MS, et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997;272:217–21.

    Article  CAS  PubMed  Google Scholar 

  4. Leto TL, Geiszt M. Role of NOX family NADPH oxidases in host defense. Antioxid Redox Signal. 2006;8:1549–61.

    Article  CAS  PubMed  Google Scholar 

  5. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1005–28.

    CAS  PubMed  Google Scholar 

  6. Vafa O, Wade M, Kern S, et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell. 2002;9:1031–44.

    Article  CAS  PubMed  Google Scholar 

  7. Gianni D, Taulet N, DerMardirossian C, Bokoch GM. c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional in vadopodia in human colon cancer cells. Mol Biol Cell. 2010;21:4287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferro E, Goitre L, Retta SF, Trabalzini L. The interplay between ROS and Ras GTPases: physiological and pathological implications. J Signal Transduct. 2012;2012:365769.

    PubMed  Google Scholar 

  9. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laupent-Puig P, Lievre A, Blons H. Mutations and response to epidermal growth factor receptor inhibitors. Clin Cancer Res. 2009;15:1133–9.

    Article  Google Scholar 

  12. Cox AD, Der CJ. The dark side of Ras: regulation of apoptosis. Oncogene. 2003;22:8999–9006.

    Article  CAS  PubMed  Google Scholar 

  13. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273:793–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kaeberlein M, Kirkland KT, Fields S, et al. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2004;2:e296.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaeberlein TL, Smith ED, Tsuchiya M, et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell. 2006;5:487–94.

    Article  CAS  PubMed  Google Scholar 

  16. Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.

    Article  CAS  PubMed  Google Scholar 

  17. Bordone L, Motta M, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4:e31.

    Article  PubMed  Google Scholar 

  18. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008;105:13421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002;21:2383–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23:2369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roninson IB. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 2002;179:1–14.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–2.

    Article  CAS  PubMed  Google Scholar 

  23. Yang MH, Nickerson S, Kim ET, et al. Regulation of RAS oncogenicity by acetylation. Proc Natl Acad Sci U S A. 2012;109:10843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J. 2007;407:451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimizu T, Awai N, Takeda K. Complex regulation of CDKs and G1 arrest during the granulocytic differentiation of human myeloblastic leukemia ML-1 cells. Oncogene. 2000;19:4640–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rajamohan SB. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol. 2009;29:4116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 2005;65:10457–63.

    Article  CAS  PubMed  Google Scholar 

  28. Huang J, Gan Q, Han L, et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One. 2008;3:e1710.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blenis J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci U S A. 1993;90:5889–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Post GR, Brown JH. G protein-coupled receptors and signaling pathways regulating growth responses. FASEB J. 1996;10:741–9.

    CAS  PubMed  Google Scholar 

  31. Fanton CP, Mcmahon M, Pieper RO. Dual growth arrest pathways in astrocytes and astrocytic tumors in response to Raf-1 activation. J Biol Chem. 2001;276:18871–7.

    Article  CAS  PubMed  Google Scholar 

  32. Malumbres M, Perez DE, Hernandes MI, et al. Cellular response to oncogenic Ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol. 2000;20:2915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang JG, Zhao G, Qin Q, et al. Nicotinamide prohibits proliferation and enhances chemosensitivity of pancreatic cancer cells through deregulating SIRT1 and Ras/Akt pathways. Pancreatology. 2013;13:140–6.

    Article  PubMed  Google Scholar 

  34. Heltweg B, Gatbonton T, Schuler AD, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006;66:4368–77.

    Article  CAS  PubMed  Google Scholar 

  35. Castro RE, Ferreira DM, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58:119–25.

    Article  CAS  PubMed  Google Scholar 

  36. Mohannad HP, Zhang W, Prevas HS, et al. Loss of a single Hic1 allele accelerates polyp formation in Apc(Delta716) mice. Oncogene. 2011;30:2659–69.

    Article  Google Scholar 

  37. Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res. 2009;69:1702–5.

    Article  CAS  PubMed  Google Scholar 

  38. Herranz D, Serrano M. SIRT1: recent lessons from mouse models. Nat Rev Cancer. 2010;10:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burnstt C, Valentini S, Cabreiro F, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477:482–5.

    Article  Google Scholar 

  40. Palacios JA, Herranz D, De Boins M, et al. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010;191:1299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ota H, Tokunaga E, Chang K, et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 2006;25:176–85.

    CAS  PubMed  Google Scholar 

  42. Sun Y, Sun D, Li F, et al. Downregulation of Sirt1 by antisense oligonucleotides induces apoptosis and enhances radiation sensitization in A549 lung cancer cells. Lung Cancer. 2007;58:21–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NO. 81373075, 81371748). This work was supported by grants from the Natural Science Foundation of Zhejiang Province (NO. LY14H16042, Y12H310019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Zhao, L., Xu, Y. et al. K-Ras promotes the non-small lung cancer cells survival by cooperating with sirtuin 1 and p27 under ROS stimulation. Tumor Biol. 36, 7221–7232 (2015). https://doi.org/10.1007/s13277-015-3429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3429-8

Keywords

Navigation