Advertisement

Tumor Biology

, Volume 36, Issue 9, pp 6741–6749 | Cite as

miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM

  • Sihai Yue
  • Lihua Wang
  • Hui Zhang
  • Youhui Min
  • Yongli Lou
  • Hongshan Sun
  • Yu Jiang
  • Wenjin Zhang
  • Aming Liang
  • Yongkun Guo
  • Ping Chen
  • Guowei Lv
  • Liuxiang Wang
  • Qinghua Zong
  • Yong LiEmail author
Research Article

Abstract

Invasion and migration of glioblastoma multiforme (GBM) is a multistep process and an important phenotype that causes this disease to invade surrounding tissues in the brain. Recent studies have highlighted that miRNAs play a pivotal role in controlling GBM cell plasticity. In this report, we used wound healing and transwell assays to identify a novel role of miR-139-5p in inhibition of GBM cell migration and invasion. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-139-5p inhibited expression of ZEB1 and ZEB2, which are master regulators of tumor metastasis. MiR-139-5p specifically interacts with the 3′-UTR regions of ZEB1 and ZEB2, attenuating their expression in GBM cells. To corroborate this finding, we rescued ZEB1 and ZEB2 expression and found partial but significant increases in miR-139-5p-suppressed invasion of GBM cells. The biological relevance of our study was validated by analyzing levels of miR-139-5p in GBM tissue. We found that its expression significantly downregulated compared to normal tissue and shorter overall survival rates in patients with lower miR-139-5p expression. These results confirm that miR-139-5p suppresses GBM migration and invasion and highlight its potential as a biomarker and therapeutic target for treating GBM.

Keywords

Cell invasion Cell migration Glioblastoma multiforme miR-139-5p ZEB1 ZEB2 GBM 

Notes

Author contributions

S.Y., L.W., and Y.L. conceived and designed the experiments; S.Y., L.W., H.Z., Y.M., Y.L., H.S., Y.J., and W.Z. performed the experiments; S.Y., L.W., H.Z., Y.M., Y.L., and A.L. analyzed the data; Y.G., P.C., G.L., L.W., and Q.Z. contributed reagents/materials/analysis tools; S.Y., L.W., H.Z., and Y.L. wrote the paper.

Conflicts of interest

None

References

  1. 1.
    Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70:217–28.CrossRefPubMedGoogle Scholar
  2. 2.
    Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2:494–503. quiz 491 p following 516.CrossRefPubMedGoogle Scholar
  3. 3.
    McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer. 2003;98:1745–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta. 1845;2014:255–65.Google Scholar
  6. 6.
    Rempel SA, Rosenblum ML, Mikkelsen T, Yan PS, Ellis KD, Golembieski WA, et al. Cathepsin b expression and localization in glioma progression and invasion. Cancer Res. 1994;54:6027–31.PubMedGoogle Scholar
  7. 7.
    Obara S, Nakata M, Takeshima H, Kuratsu J, Maruyama I, Kitajima I. Inhibition of migration of human glioblastoma cells by cerivastatin in association with focal adhesion kinase (FAK). Cancer Lett. 2002;185:153–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995;55:2752–5.PubMedGoogle Scholar
  9. 9.
    Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D, Sarkisian MR, et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med. 2013;5:1196–212.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009;66:773–87.CrossRefPubMedGoogle Scholar
  12. 12.
    Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 2007;26:6979–88.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68:537–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Moller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M. A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol. 2013;47:131–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, et al. HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology. 2011;141:2076–87.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, et al. Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One. 2013;8:e77068.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology. 2011;140:322–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Gu W, Li X, Wang J. Mir-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol Rep. 2014;31:397–404.PubMedGoogle Scholar
  19. 19.
    Li RY, Chen LC, Zhang HY, Du WZ, Feng Y, Wang HB, et al. MiR-139 inhibits Mcl-1 expression and potentiates TMZ-induced apoptosis in glioma. CNS Neurosci Ther. 2013;19:477–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci U S A. 2010;107:20828–33.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Song M, Yin Y, Zhang J, Zhang B, Bian Z, Quan C, et al. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell 2014.Google Scholar
  23. 23.
    Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, et al. Cloonan N: miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19:1767–80.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kahlert UD, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett. 2013;331:131–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Valastyan S, Benaich N, Chang A, Reinhardt F, Weinberg RA. Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009;23:2592–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–46.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Valastyan S, Weinberg RA. MicroRNAs: crucial multi-tasking components in the complex circuitry of tumor metastasis. Cell Cycle. 2009;8:3506–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28:5369–80.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, et al. MiR-221 and miR-222 target puma to induce cell survival in glioblastoma. Mol Cancer. 2010;9:229.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C, et al. miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol. 2010;36:913–20.PubMedGoogle Scholar
  33. 33.
    Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. MicroRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Wu DG, Wang YY, Fan LG, Luo H, Han B, Sun LH, et al. MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl). 2011;124:2616–21.Google Scholar
  35. 35.
    Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69:7569–76.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Luan S, Sun L, Huang F. MicroRNA-34a: A novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010;41:67–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Silber J, Jacobsen A, Ozawa T, Harinath G, Pedraza A, Sander C, et al. miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis. PLoS One. 2012;7:e33844.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting micrornas. Nat Cell Biol. 2009;11:1487–95.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Sihai Yue
    • 1
  • Lihua Wang
    • 1
  • Hui Zhang
    • 1
  • Youhui Min
    • 1
  • Yongli Lou
    • 1
  • Hongshan Sun
    • 1
  • Yu Jiang
    • 1
  • Wenjin Zhang
    • 1
  • Aming Liang
    • 1
  • Yongkun Guo
    • 1
  • Ping Chen
    • 1
  • Guowei Lv
    • 1
  • Liuxiang Wang
    • 1
  • Qinghua Zong
    • 1
  • Yong Li
    • 1
    Email author
  1. 1.Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhou Central HospitalZhengzhouChina

Personalised recommendations