Tumor Biology

, Volume 36, Issue 9, pp 6759–6764 | Cite as

Role of Lgr5-positive cells in colorectal cancer

  • Honghua Ding
  • Chungang WangEmail author
Research Article


The molecular regulation of the growth of colorectal cancer (CRC) cells is not completely understood. Here, we report expression of Lgr5, a stem cell marker for the intestine and hair follicle, in some of the CRC cells in the patients. To determine the role of Lgr5-positive cells in the tumorigenesis of CRCs, we prepared an adeno-associated virus (AAV) that carries diphtheria toxin fragment A (DTA) under the control of Lgr5 promoter (AAV-pLgr5-DTA). Transduction of several CRC cell lines with this virus selectively killed Lgr5-positive cells, resulting in significant inhibition of the CRC cell growth in vitro and in vivo. Thus, our data highlight a potential role of Lgr5-positive cells in the tumorigenesis of CRCs, and suggest that treating these Lgr5-positive cells in CRCs may substantially improve the outcome of CRC therapy.


Lgr5 Colorectal cancer Diphtheria toxin fragment A (DTA) Tumorigenesis 


  1. 1.
    Labianca R, Beretta GD, Mosconi S, Pessi MA, Milesi L. The development of clinical research in crc. Ann Oncol. 2005;16 Suppl 4:iv37–43.PubMedGoogle Scholar
  2. 2.
    Van Schaeybroeck S, Allen WL, Turkington RC, Johnston PG. Implementing prognostic and predictive biomarkers in crc clinical trials. Nat Rev Clin Oncol. 2011;8:222–32.CrossRefPubMedGoogle Scholar
  3. 3.
    East JE, Dekker E. Colorectal cancer diagnosis in 2012: a new focus for crc prevention—more serration, less inflammation. Nat Rev Gastroenterol Hepatol. 2013;10:69–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174:715–21.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene lgr5. Nature. 2007;449:1003–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Mardaryev AN, Meier N, Poterlowicz K, Sharov AA, Sharova TY, Ahmed MI, et al. Lhx2 differentially regulates sox9, tcf4 and lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development. 2011;138:4843–52.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40:1291–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Kinzel B, Pikiolek M, Orsini V, Sprunger J, Isken A, Zietzling S, et al. Functional roles of lgr4 and lgr5 in embryonic gut, kidney and skin development in mice. Dev Biol. 2014;390:181–90.CrossRefPubMedGoogle Scholar
  9. 9.
    da Silva-Diz V, Sole-Sanchez S, Valdes-Gutierrez A, Urpi M, Riba-Artes D, Penin RM, et al. Progeny of lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis. Oncogene. 2013;32:3732–43.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsuji S, Kawasaki Y, Furukawa S, Taniue K, Hayashi T, Okuno M, et al. The mir-363-gata6-lgr5 pathway is critical for colorectal tumourigenesis. Nat Commun. 2014;5:3150.PubMedGoogle Scholar
  11. 11.
    Amsterdam A, Raanan C, Schreiber L, Freyhan O, Fabrikant Y, Melzer E, et al. Differential localization of lgr5 and nanog in clusters of colon cancer stem cells. Acta Histochem. 2013;115:320–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Leushacke M, Barker N. Lgr5 and lgr6 as markers to study adult stem cell roles in self-renewal and cancer. Oncogene. 2012;31:3009–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Takeda K, Kinoshita I, Shimizu Y, Matsuno Y, Shichinohe T, Dosaka-Akita H. Expression of lgr5, an intestinal stem cell marker, during each stage of colorectal tumorigenesis. Anticancer Res. 2011;31:263–70.PubMedGoogle Scholar
  14. 14.
    Fan XS, Wu HY, Yu HP, Zhou Q, Zhang YF, Huang Q. Expression of lgr5 in human colorectal carcinogenesis and its potential correlation with beta-catenin. Int J Color Dis. 2010;25:583–90.CrossRefGoogle Scholar
  15. 15.
    Becker L, Huang Q, Mashimo H. Immunostaining of lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. ScientificWorldJournal. 2008;8:1168–76.CrossRefPubMedGoogle Scholar
  16. 16.
    von Kleist S, Chany E, Burtin P, King M, Fogh J. Immunohistology of the antigenic pattern of a continuous cell line from a human colon tumor. J Natl Cancer Inst. 1975;55:555–60.CrossRefGoogle Scholar
  17. 17.
    Khan IF, Hirata RK, Russell DW. Aav-mediated gene targeting methods for human cells. Nat Protoc. 2011;6:482–501.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hajitou A, Rangel R, Trepel M, Soghomonyan S, Gelovani JG, Alauddin MM, et al. Design and construction of targeted aavp vectors for mammalian cell transduction. Nat Protoc. 2007;2:523–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1:1412–28.CrossRefPubMedGoogle Scholar
  20. 20.
    Petersson M, Niemann C. Stem cell dynamics and heterogeneity: implications for epidermal regeneration and skin cancer. Curr Med Chem. 2012;19:5984–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3:434–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al. Lineage tracing reveals lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337:730–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, et al. Cd133 negative glioma cells form tumors in nude rats and give rise to cd133 positive cells. Int J Cancer. 2008;122:761–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Jiang X, Zeng Y, Zhou H, Yang J, Cao R. Proliferating pancreatic beta-cells upregulate aldh. Histochem Cell Biol. 2014;142:685–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang L, Wang L, Liu X, Zheng D, Liu S, Liu C. Aldh expression characterizes g1-phase proliferating beta cells during pregnancy. PLoS One. 2014;9:e96204.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tonne JM, Sakuma T, Munoz-Gomez M, El Khatib M, Barry MA, Kudva YC, et al. Beta cell regeneration after single-round immunological destruction in a mouse model. Diabetologia. 2015;58:313–23.CrossRefPubMedGoogle Scholar
  27. 27.
    Xiao X, Guo P, Prasadan K, Shiota C, Peirish L, Fischbach S, et al. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes. Nat Protoc. 2014;9:2719–24.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther. 2008;15:858–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang AY, Peng PD, Ehrhardt A, Storm TA, Kay MA. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum Gene Ther. 2004;15:405–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med. 2008;10:717–33.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Oncology, Shanghai First People’s Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Radiation Oncology, Shanghai First People’s Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations