Advertisement

Tumor Biology

, Volume 36, Issue 9, pp 6691–6700 | Cite as

Tumor suppressive microRNA-200a inhibits renal cell carcinoma development by directly targeting TGFB2

  • Ruijing Lu
  • Ziliang Ji
  • Xiaoqing Li
  • Jie Qin
  • Guanghui Cui
  • Jing Chen
  • Qingna Zhai
  • Chunjuan Zhao
  • Wei ZhangEmail author
  • Zhendong YuEmail author
Research Article

Abstract

A large body of evidence indicates that microRNAs play a critical role in tumor initiation and progression by negatively regulating oncogenes or tumor suppressor genes. Here, we report that the expression of miR-200a was notably downregulated in 45 renal cell carcinoma (RCC) samples. Restoration of miR-200a suppressed cell proliferation, migration, and invasion in two RCC cell lines. Furthermore, we used an epithelial-to-mesenchymal transition PCR array to explore the putative target genes of miR-200a. By performing quantitative real-time PCR, ELISA, and luciferase reporter assays, transforming growth factor beta2 (TGFB2) was validated as a direct target gene of miR-200a. Moreover, siRNA-mediated knockdown of TGFB2 partially phenocopied the effect of miR-200a overexpression. These results suggest that miR-200a suppresses RCC development via directly targeting TGFB2, indicating that miR-200a may present a novel target for diagnostic and therapeutic strategies in RCC.

Keywords

miR-200a Tumor suppressor TGFB2 Renal cell carcinoma 

Notes

Acknowledgments

This project was supported by Science and Technology Planning Project of Shenzhen in China (no. JCYJ20140415162543037) and Health and Family Planning Scientific Research Project of Shenzhen in China (no. 201401049).

Conflicts of interest

None

References

  1. 1.
    Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.CrossRefPubMedGoogle Scholar
  2. 2.
    Campbell SC, Flanigan RC, Clark JI. Nephrectomy in metastatic renal cell carcinoma. Curr Treat Options Oncol. 2003;4(5):363–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Sun M, Lughezzani G, Perrotte P, Karakiewicz PI. Treatment of metastatic renal cell carcinoma. Nat Rev Urol. 2010;7(6):327–38.CrossRefPubMedGoogle Scholar
  4. 4.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.CrossRefPubMedGoogle Scholar
  7. 7.
    Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, et al. Genome‐wide microRNA expression profiling in renal cell carcinoma: significant down‐regulation of miR‐141 and miR‐200c. J Pathol. 2008;216(4):418–27.CrossRefPubMedGoogle Scholar
  8. 8.
    White N, Khella H, Grigull J, Adzovic S, Youssef Y, Honey R, et al. miRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215. Br J Cancer. 2011;105(11):1741–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hidaka H, Seki N, Yoshino H, Yamasaki T, Yamada Y, Nohata N, et al. Tumor suppressive microRNA-1285 regulates novel molecular targets: aberrant expression and functional significance in renal cell carcinoma. Oncotarget. 2012;3(1):44.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One. 2010;5(12):e15224.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010;10(3):219–22.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian X-W, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391(1):535–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Feng J, Wang J, Chen M, Chen G, Wu Z, Ying L, et al. miR-200a suppresses cell growth and migration by targeting MACC1 and predicts prognosis in hepatocellular carcinoma. Oncol Rep. 2015;33(2):713–20.PubMedGoogle Scholar
  14. 14.
    Barron N, Keenan J, Gammell P, Martinez VG, Freeman A, Masters JR, et al. Biochemical relapse following radical prostatectomy and miR‐200a levels in prostate cancer. Prostate. 2012;72(11):1193–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa IM, Schwarz JK, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol. 2009;114(3):457–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Yoshino H, Enokida H, Itesako T, Tatarano S, Kinoshita T, Fuse M, et al. Epithelial-mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J Hum Genet. 2013;58(8):508–16.CrossRefPubMedGoogle Scholar
  17. 17.
    Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6(7):655–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin. 2014;140(3):387–97.CrossRefGoogle Scholar
  19. 19.
    Zhai Q, Zhou L, Zhao C, Wan J, Yu Z, Guo X, et al. Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma. Biochem Biophys Res Commun. 2012;419(4):621–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5(3):115–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Park S-M, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.CrossRefPubMedGoogle Scholar
  24. 24.
    Becker LE, Takwi AAL, Lu Z, Li Y. The role of miR-200a in mammalian epithelial cell transformation. Carcinogenesis. 2014;36(1):2–12.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Saydam O, Shen Y, Würdinger T, Senol O, Boke E, James MF, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol Cell Biol. 2009;29(21):5923–40.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem. 2011;286(29):25992–6002.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213(2):374–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Glasgow E, Mishra L. Transforming growth factor-β signaling and ubiquitinators in cancer. Endocr Relat Cancer. 2008;15(1):59–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Hill JJ, Tremblay T-L, Cantin C, O'Connor-McCourt M, Kelly JF, Lenferink A. Glycoproteomic analysis of two mouse mammary cell lines during transforming growth factor (TGF)-beta induced epithelial to mesenchymal transition. Proteome Sci. 2009;7(2):1–17.Google Scholar
  32. 32.
    Sánchez-Capelo A. Dual role for TGF-β1 in apoptosis. Cytokine Growth Factor Rev. 2005;16(1):15–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Smith AL, Robin TP, Ford HL. Molecular pathways: targeting the TGF-β pathway for cancer therapy. Clin Cancer Res. 2012;18(17):4514–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Padua D, Massagué J. Roles of TGFβ in metastasis. Cell Res. 2008;19(1):89–102.CrossRefGoogle Scholar
  35. 35.
    Epstein FH, Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. N Engl J Med. 2000;342(18):1350–8.CrossRefGoogle Scholar
  36. 36.
    Semczuk A, Zakrzewski P, Forma E, Cygankiewicz A, Semczuk-Sikora A, Bryś M, et al. TGFβ-pathway is down-regulated in a uterine carcinosarcoma: a case study. Pathol Res Pract. 2013;209(11):740–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Beisner J, Buck MB, Fritz P, Dippon J, Schwab M, Brauch H, et al. A novel functional polymorphism in the transforming growth factor-β2 gene promoter and tumor progression in breast cancer. Cancer Res. 2006;66(15):7554–61.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes. 2011;60:280–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302(3):F369–79.CrossRefPubMedGoogle Scholar
  40. 40.
    Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, et al. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell. 2011;22(10):1686–98.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68(19):7846–54.CrossRefPubMedGoogle Scholar
  42. 42.
    Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gregory PA. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell. 2011;22:1686–98.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ruijing Lu
    • 1
    • 2
  • Ziliang Ji
    • 3
  • Xiaoqing Li
    • 1
  • Jie Qin
    • 1
  • Guanghui Cui
    • 1
  • Jing Chen
    • 1
  • Qingna Zhai
    • 1
    • 2
  • Chunjuan Zhao
    • 1
  • Wei Zhang
    • 4
    Email author
  • Zhendong Yu
    • 1
    Email author
  1. 1.Central LaboratoryPeking University Shenzhen HospitalShenzhenChina
  2. 2.Clinical LaboratoryBao’an District of Shenzhen Maternity and Child Health HospitalShenzhenChina
  3. 3.Department of UrologyLonggang District People’s Hospital of ShenzhenShenzhenChina
  4. 4.Biomedical Research InstituteShenzhen Peking University – the Hong Kong University of Science and Technology Medical CenterShenzhenChina

Personalised recommendations