Tumor Biology

, Volume 36, Issue 7, pp 4871–4881 | Cite as

Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer

  • Seyed Mohammad Ali Hosseini Rad
  • Lida Langroudi
  • Fatemeh Kouhkan
  • Laleh Yazdani
  • Alireza Nouri Koupaee
  • Sara Asgharpour
  • Zahra Shojaei
  • Taravat Bamdad
  • Ehsan Arefian


Gene therapy as a therapeutic approach has been the dream for many scientists around the globe. Many strategies have been proposed and applied for this purpose, yet the void for a functional safe method is still apparent. Since most of the diseases are caused by undesirable upregulation (oncogenes) or downregulation (tumor suppressor genes) of genes, major gene therapy’s techniques affect gene expression. Most of the methods are used in post-transcriptional level such as RNA inhibitory (RNAi) and splice-switching oligonucleotides (SSOs). RNAi blocks messenger RNA (mRNA) translation by mRNA degradation or interruption between attachments of mRNA with ribosomes’ subunits. However, one of the novel methods is the usage of transcription factor targeted decoys. DNA decoys are the new generation of functional gene downregulatory oligonucleotides which compete with specific binding sites of transcription factors. Considering the exponential growth of this technique in both in vitro and in vivo studies, in this paper, we aim to line out the description, design, and application of decoys in research and therapy.


Transcription factor decoy (TFD) Gene therapy Oligodeoxynucleotide (ODN) decoy 



We appreciate Nadia Chamani for assistance in preparing the figures.

Author disclosure statement

Authors disclose any commercial associations that might create a conflict of interest in connection with submitted manuscripts.


  1. 1.
    Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A. 2006;103:17337–42.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007;3:166–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol. 2008;15:842–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zheng L, Wang L, Gan J, Zhang H. Rna activation: promise as a new weapon against cancer. Cancer Lett. 2014;355:18–24.CrossRefPubMedGoogle Scholar
  5. 5.
    Junxia W, Ping G, Yuan H, Lijun Z, Jihong R, Fang L, et al. Double strand RNA-guided endogeneous e-cadherin up-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cells in vitro and in vivo. Cancer Sci. 2010;101:1790–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin J, et al. Up-regulation of e-cadherin by small activating rna inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun. 2008;375:566–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R, Li LC. Antitumor effect of dsRNA-induced p21(waf1/cip1) gene activation in human bladder cancer cells. Mol Cancer Ther. 2008;7:698–703.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang J, Place RF, Huang V, Wang X, Noonan EJ, Magyar CE, et al. Prognostic value and function of KLF4 in prostate cancer: RNAa and vector-mediated overexpression identify KLF4 as an inhibitor of tumor cell growth and migration. Cancer Res. 2010;70:10182–91.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Portnoy V, Huang V, Place RF, Li LC. Small rna and transcriptional upregulation. Wiley Interdiscip Rev RNA. 2011;2:748–60.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rossi JJ. Transcriptional activation by small RNA duplexes. Nat Chem Biol. 2007;3:136–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Zamecnik PC, Stephenson ML. Inhibition of rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978;75:280–4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012;11:125–40.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I, et al. Randomized phase ii study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28:4247–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein b synthesis inhibitor, for lowering of ldl cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.CrossRefPubMedGoogle Scholar
  15. 15.
    Calin GA, Croce CM. Microrna signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRefPubMedGoogle Scholar
  16. 16.
    Rad SMAH, Bavarsad MS, Arefian E, Jaseb K, Shahjahani M, Saki N. The role of micrornas in stemness of cancer stem cells. Oncol Rev. 2013;7:e8.CrossRefGoogle Scholar
  17. 17.
    Mobarra N, Shafiee A, Rad SM, Tasharrofi N, Soufi-Zomorod M, Hafizi M, Movahed M, Kouhkan F, Soleimani M. Overexpression of microrna-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells. In Vitro Cell Dev Biol Anim. 2015. doi:10.1007/s11626-015-9872-4.
  18. 18.
    Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, et al. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther. 2014;25:587–98.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides. 2009;19:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med. 2011;364:1513–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, et al. Local restoration of dystrophin expression with the morpholino oligomer avi-4658 in duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8:918–28.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brown M, Figge J, Hansen U, Wright C, Jeang KT, Khoury G, et al. Lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell. 1987;49:603–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Hu MC, Davidson N. The inducible lac operator-repressor system is functional in mammalian cells. Cell. 1987;48:555–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Friedman AD, Triezenberg SJ, McKnight SL. Expression of a truncated viral trans-activator selectively impedes lytic infection by its cognate virus. Nature. 1988;335:452–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Trono D, Feinberg MB, Baltimore D. HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell. 1989;59:113–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang XF, Calame K. Sv40 enhancer-binding factors are required at the establishment but not the maintenance step of enhancer-dependent transcriptional activation. Cell. 1986;47:241–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Park YG, Nesterova M, Agrawal S, Cho-Chung YS. Dual blockade of cyclic amp response element- (CRE) and AP-1-directed transcription by cre-transcription factor decoy oligonucleotide. gene-specific inhibition of tumor growth. J Biol Chem. 1999;274:1573–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest. 2000;106:1071–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 2011;27:141–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Leung TH, Hoffmann A, Baltimore D. One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell. 2004;118:453–64.CrossRefPubMedGoogle Scholar
  31. 31.
    Bielinska A, Shivdasani RA, Zhang LQ, Nabel GJ. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 1990;250:997–1000.CrossRefPubMedGoogle Scholar
  32. 32.
    Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of tar sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990;63:601–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, et al. A gene therapy strategy using a transcription factor decoy of the e2f binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995;92:5855–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang X, Liu Q, Hou B, Zhang W, Yan M, Jia H, et al. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells. PLoS One. 2013;8:e73942.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rad SM, Bamdad T, Sadeghizadeh M, Arefian E, Lotfinia M, Ghanipour M. Transcription factor decoy against stem cells master regulators, nanog and oct-4: A possible approach for differentiation therapy. Tumour Biol. 2014. doi:10.1007/s13277-014-2884-y.
  36. 36.
    Seyed Mohammad Ali Hosseini Rad MSB, Arefian E, Kaveh Jaseb MS, Saki N. The role of micrornas in stemness of cancer stem cells. Oncol Rev. 2013;7:53–8.Google Scholar
  37. 37.
    Penolazzi L, Lambertini E, Aguiari G, del Senno L, Piva R. Modulation of estrogen receptor gene expression in human breast cancer cells: a decoy strategy with specific pcr-generated DNA fragments. Breast Cancer Res Treat. 1998;49:227–35.CrossRefPubMedGoogle Scholar
  38. 38.
    Khaled AR, Butfiloski EJ, Sobel ES, Schiffenbauer J. Use of phosphorothioate-modified oligodeoxynucleotides to inhibit NF-kappaB expression and lymphocyte function. Clin Immunol Immunopathol. 1998;86:170–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Morishita R, Higaki J, Tomita N, Ogihara T. Application of transcription factor "Decoy" Strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res. 1998;82:1023–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Cooper Jr JA, Parks JM, Carcelen R, Kahlon SS, Sheffield M, Culbreth R. Attenuation of interleukin-8 production by inhibiting nuclear factor-kappab translocation using decoy oligonucleotides. Biochem Pharmacol. 2000;59:605–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Shibuya T, Takei Y, Hirose M, Ikejima K, Enomoto N, Maruyama A, et al. A double-strand decoy DNA oligomer for NF-kappaB inhibits TNFalpha-induced ICAM-1 expression in sinusoidal endothelial cells. Biochem Biophys Res Commun. 2002;298:10–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol. 2006;70:1621–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Dzau VJ, Horiuchi M. In vivo gene transfer and gene modulation in hypertension research. Hypertension. 1996;28:1132–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Tomita N, Kashihara N, Morishita R. Transcription factor decoy oligonucleotide-based therapeutic strategy for renal disease. Clin Exp Nephrol. 2007;11:7–17.CrossRefPubMedGoogle Scholar
  45. 45.
    Jiang C, Xuan Z, Zhao F, Zhang MQ. Tred: A transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 2007;35:D137–40.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (chip). Cold Spring Harbor Protocols. 2009;2009:pdb. prot5279.Google Scholar
  47. 47.
    Penolazzi L, Lambertini E, Aguiari G, del Senno L, Piva R. Cis element 'decoy' against the upstream promoter of the human estrogen receptor gene. Biochim Biophys Acta. 2000;1492:560–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Fennewald SM, Scott EP, Zhang L, Yang X, Aronson JF, Gorenstein DG, et al. Thioaptamer decoy targeting of AP-1 proteins influences cytokine expression and the outcome of arenavirus infections. J Gen Virol. 2007;88:981–90.CrossRefPubMedGoogle Scholar
  49. 49.
    Catimel B, Rothacker J, Nice E. The use of biosensors for microaffinity purification: an integrated approach to proteomics. J Biochem Biophys Methods. 2001;49:289–312.CrossRefPubMedGoogle Scholar
  50. 50.
    Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat Protoc. 2007;2:1849–61.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Majumder S, Varadharaj S, Ghoshal K, Monani U, Burghes AH, Jacob ST. Identification of a novel cyclic amp-response element (CRE-ii) and the role of CREB-1 in the camp-induced expression of the survival motor neuron (SMN) gene. J Biol Chem. 2004;279:14803–11.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gambari R. Biospecific interaction analysis: a tool for drug discovery and development. Am J Pharmacogenomics. 2001;1:119–35.CrossRefPubMedGoogle Scholar
  53. 53.
    Gambari R, Feriotto G, Rutigliano C, Bianchi N, Mischiati C. Biospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs. J Pharmacol Exp Ther. 2000;294:370–7.PubMedGoogle Scholar
  54. 54.
    Henry SP, Giclas PC, Leeds J, Pangburn M, Auletta C, Levin AA, et al. Activation of the alternative pathway of complement by a phosphorothioate oligonucleotide: Potential mechanism of action. J Pharmacol Exp Ther. 1997;281:810–6.PubMedGoogle Scholar
  55. 55.
    Henry SP, Taylor J, Midgley L, Levin AA, Kornbrust DJ. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a 4-week study in cd-1 mice. Antisense Nucleic Acid Drug Dev. 1997;7:473–81.CrossRefPubMedGoogle Scholar
  56. 56.
    Campbell JM, Bacon TA, Wickstrom E. Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods. 1990;20:259–67.CrossRefPubMedGoogle Scholar
  57. 57.
    Crooke ST. Progress in antisense technology: The end of the beginning. Methods Enzymol. 2000;313:3–45.CrossRefPubMedGoogle Scholar
  58. 58.
    Phillips MI, Zhang YC. Basic principles of using antisense oligonucleotides in vivo. Methods Enzymol. 2000;313:46–56.CrossRefPubMedGoogle Scholar
  59. 59.
    Uhlmann E, Peyman A, Breipohl G, Will DW. Pna: Synthetic polyamide nucleic acids with unusual binding properties. Angew Chem Int Ed. 1998;37:2796–823.CrossRefGoogle Scholar
  60. 60.
    Mischiati C, Borgatti M, Bianchi N, Rutigliano C, Tomassetti M, Feriotto G, et al. Interaction of the human NF-kappaB p52 transcription factor with DNA-PNA hybrids mimicking the NF-kappaB binding sites of the human immunodeficiency virus type 1 promoter. J Biol Chem. 1999;274:33114–22.CrossRefPubMedGoogle Scholar
  61. 61.
    Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, et al. Cationic liposomes as delivery systems for double-stranded pna-DNA chimeras exhibiting decoy activity against NF-kappaB transcription factors. Biochem Pharmacol. 2002;64:609–16.CrossRefPubMedGoogle Scholar
  62. 62.
    Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A. 2000;97:5633–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Crinelli R, Bianchi M, Gentilini L, Magnani M. Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res. 2002;30:2435–43.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kubareva EA, Fedorova OA, Gottikh MB, Tanaka H, Malvy C, Shabarova ZA. NF-kappaB p50 subunit cross-linking to DNA duplexes, containing a monosubstituted pyrophosphate internucleotide bond. FEBS Lett. 1996;381:35–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21:99–103.CrossRefPubMedGoogle Scholar
  66. 66.
    Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V, Pietersz GA. Cell-penetrating peptides: application in vaccine delivery. Biochim Biophys Acta. 1805;2010:25–34.Google Scholar
  67. 67.
    Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: Myths and realities. J Control Release. 2007;117:148–62.CrossRefPubMedGoogle Scholar
  68. 68.
    El-Andaloussi S, Johansson H, Magnusdottir A, Jarver P, Lundberg P, Langel U. Tp10, a delivery vector for decoy oligonucleotides targeting the myc protein. J Control Release. 2005;110:189–201.CrossRefPubMedGoogle Scholar
  69. 69.
    Buchanan KD, Huang SL, Kim H, McPherson DD, MacDonald RC. Encapsulation of NF-kappaB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release. J Control Release. 2009;141:193–8.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Takahashi T, Togo S, Kumamoto T, Watanabe K, Kubota T, Ichikawa Y, et al. Transfection of NF-kappaB decoy oligodeoxynucleotides into macrophages reduces murine fatal liver failure after excessive hepatectomy. J Surg Res. 2009;154:179–86.CrossRefPubMedGoogle Scholar
  71. 71.
    Ohmori K, Takeda S, Miyoshi S, Minami M, Nakane S, Ohta M, et al. Attenuation of lung injury in allograft rejection using NF-kappaB decoy transfection-novel strategy for use in lung transplantation. Eur J Cardiothorac Surg. 2005;27:23–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.CrossRefPubMedGoogle Scholar
  73. 73.
    McNamara 2nd JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24:1005–15.CrossRefPubMedGoogle Scholar
  74. 74.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448:39–43.CrossRefPubMedGoogle Scholar
  75. 75.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.CrossRefPubMedGoogle Scholar
  76. 76.
    Keates AC, Fruehauf JH, Xiang S, Parker PD, Li CJ. Cequent pharmaceuticals, inc.: the biological pitcher for RNAi therapeutics. Pharmacogenomics. 2007;8:867–71.CrossRefPubMedGoogle Scholar
  77. 77.
    Xiang S, Fruehauf J, Li CJ. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol. 2006;24:697–702.CrossRefPubMedGoogle Scholar
  78. 78.
    MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, et al. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell. 2007;11:431–45.CrossRefPubMedGoogle Scholar
  79. 79.
    Timko BP, Whitehead K, Gao W, Kohane DS, Farokhzad O, Anderson D, et al. Advances in drug delivery. Annu Rev Mater Res. 2011;41:1–20.CrossRefGoogle Scholar
  80. 80.
    Huang L, Liu Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng. 2011;13:507–30.CrossRefPubMedGoogle Scholar
  81. 81.
    Jansen B, Zangemeister-Wittke U. Antisense therapy for cancer–the time of truth. Lancet Oncol. 2002;3:672–83.CrossRefPubMedGoogle Scholar
  82. 82.
    Coppelli FM, Grandis JR. Oligonucleotides as anticancer agents: From the benchside to the clinic and beyond. Curr Pharm Des. 2005;11:2825–40.CrossRefPubMedGoogle Scholar
  83. 83.
    Uetsuka H, Haisa M, Kimura M, Gunduz M, Kaneda Y, Ohkawa T, et al. Inhibition of inducible NF-kappaB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res. 2003;289:27–35.CrossRefPubMedGoogle Scholar
  84. 84.
    Kim KH, Lee WR, Kang YN, Chang YC, Park KK. Inhibitory effect of nuclear factor-kappab decoy oligodeoxynucleotide on liver fibrosis through regulation of the epithelial-mesenchymal transition. Hum Gene Ther. 2014;25:721–9.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 2003;100:4138–43.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Liu M, Wang F, Wen Z, Shi M, Zhang H. Blockage of Stat3 signaling pathway with a decoy oligodeoxynucleotide inhibits growth of human ovarian cancer cells. Cancer Investig. 2014;32:8–12.CrossRefGoogle Scholar
  87. 87.
    Zhang X, Liu P, Zhang B, Mao H, Shen L, Ma Y. Inhibitory effects of Stat3 decoy oligodeoxynucleotides on human epithelial ovarian cancer cell growth in vivo. Int J Mol Med. 2013;32:623–8.PubMedGoogle Scholar
  88. 88.
    Zhang X, Zhang J, Wang L, Wei H, Tian Z. Therapeutic effects of Stat3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer. 2007;7:149.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Sun X, Sui Q, Zhang C, Tian Z, Zhang J. Targeting blockage of Stat3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther. 2013;12:2885–96.CrossRefPubMedGoogle Scholar
  90. 90.
    Zhang X, Xiao W, Wang L, Tian Z, Zhang J. Deactivation of signal transducer and activator of transcription 3 reverses chemotherapeutics resistance of leukemia cells via down-regulating P-gp. PLoS One. 2011;6:e20965.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Ahn JD, Kim CH, Magae J, Kim YH, Kim HJ, Park KK, et al. E2f decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun. 2003;310:1048–53.CrossRefPubMedGoogle Scholar
  92. 92.
    Obama K, Kanai M, Kawai Y, Fukushima M, Takabayashi A. Role of retinoblastoma protein and E2F-1 transcription factor in the acquisition of 5-fluorouracil resistance by colon cancer cells. Int J Oncol. 2002;21:309–14.PubMedGoogle Scholar
  93. 93.
    Alper O, Bergmann-Leitner ES, Abrams S, Cho-Chung YS. Apoptosis, growth arrest and suppression of invasiveness by CRE-decoy oligonucleotide in ovarian cancer cells: Protein kinase a downregulation and cytoplasmic export of CRE-binding proteins. Mol Cell Biochem. 2001;218:55–63.CrossRefPubMedGoogle Scholar
  94. 94.
    Zhu X, Li Q, Li S, Chen B, Zou H. HIF-1alpha decoy oligodeoxynucleotides inhibit HIF-1alpha signaling and breast cancer proliferation. Int J Oncol. 2015;46:215–22.PubMedGoogle Scholar
  95. 95.
    Novak EM, Metzger M, Chammas R, da Costa M, Dantas K, Manabe C, et al. Downregulation of TNF-alpha and VEGF expression by Sp1 decoy oligodeoxynucleotides in mouse melanoma tumor. Gene Ther. 2003;10:1992–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Membrino A, Cogoi S, Pedersen EB, Xodo LE. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One. 2011;6:e24421.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    El-Sagheer A. H BT. Synthesis, serum stability and cell uptake of cyclic and hairpin decoy oligonucleotides for TCF/LEF and GLI transcription factors. Int J Pept Res Ther. 2008;14:367–72.CrossRefGoogle Scholar
  98. 98.
    Heilbronn R, Weger S. Viral vectors for gene transfer: Current status of gene therapeutics. Handb Exp Pharmacol. 2010:143-170.Google Scholar
  99. 99.
    Luo J, Luo Y, Sun J, Zhou Y, Zhang Y, Yang X. Adeno-associated virus-mediated cancer gene therapy: current status. Cancer Lett. 2015;356:347–56.CrossRefPubMedGoogle Scholar
  100. 100.
    Cooray S, Howe SJ, Thrasher AJ. Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol. 2012;507:29–57.CrossRefPubMedGoogle Scholar
  101. 101.
    Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–4.CrossRefPubMedGoogle Scholar
  102. 102.
    Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107:1864–9.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Brian P. Timko KW, Weiwei Gao. Advances in drug delivery. Ann Rev Mater Res. 2011.Google Scholar
  104. 104.
    Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM. Exosomes: Fit to deliver small RNA. Commun Integr Biol. 2010;3:447–50.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Seyed Mohammad Ali Hosseini Rad
    • 1
    • 2
  • Lida Langroudi
    • 1
  • Fatemeh Kouhkan
    • 1
  • Laleh Yazdani
    • 2
  • Alireza Nouri Koupaee
    • 1
  • Sara Asgharpour
    • 1
  • Zahra Shojaei
    • 1
  • Taravat Bamdad
    • 2
  • Ehsan Arefian
    • 3
    • 1
  1. 1.Department of Molecular Biology and Genetic EngineeringStem Cell Technology Research CenterTehranIran
  2. 2.Department of Virology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Microbiology, School of Biology, College of ScienceUniversity of TehranTehranIran

Personalised recommendations