Tumor Biology

, Volume 36, Issue 4, pp 2213–2222 | Cite as

COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression

  • Fernando Vázquez-Villa
  • Marcos García-Ocaña
  • José A. Galván
  • Jorge García-Martínez
  • Carmen García-Pravia
  • Primitiva Menéndez-Rodríguez
  • Carmen González-del Rey
  • Luis Barneo-Serra
  • Juan R. de los Toyos
Review

Abstract

The COL11A1 human gene codes for the α1 chain of procollagen 11A1 and mature collagen 11A1, an extracellular minor fibrillar collagen. Under regular conditions, this gene and its derived products are mainly expressed by chondrocytes and mesenchymal stem cells as well as osteoblasts. Normal epithelial cells and quiescent fibroblasts from diverse locations do not express them. Mesenchyme-derived tumors and related conditions, such as scleroderma and keloids, are positive for COL11A1/(pro)collagen 11A1 expression, as well as high-grade human gliomas/glioblastomas. This expression is almost absent in benign pathological processes such as breast hyperplasia, sclerosing adenosis, idiopathic pulmonary fibrosis, cirrhosis, pancreatitis, diverticulitis, and inflammatory bowel disease. By contrast, COL11A1/(pro)collagen 11A1 is highly expressed by activated stromal cells of the desmoplastic reaction of different human invasive carcinomas, and this expression is correlated with carcinoma aggressiveness and progression, and lymph node metastasis. COL11A1 upregulation has been shown to be associated to TGF-β1, Wnt, and Hh signaling pathways, which are especially active in cancer-associated stromal cells. At the front of invasive carcinomas, neoplastic epithelial cells, putatively undergoing epithelial-to-mesenchymal transition, and carcinoma-derived cells with highly metastatic capabilities, can express COL11A1. Thus, in established metastases, the expression of COL11A1/(pro)collagen 11A1 could rely on both the metastatic epithelial cells and/or the accompanying activated stromal cells. COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human carcinoma-associated stromal cells and carcinoma progression.

Keywords

COL11A1 (Pro)collagen 11A1 Stromal cells Human invasive carcinoma 

References

  1. 1.
    Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5:15. doi:10.1186/1755-1536-5-15.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005;118:1341–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20:495–501.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
    Kao L-P, Yu S-L, Singh S, Wang K-H, Kao A-P, Li SS. Comparative profiling of mRNA and microRNA expression in human mesenchymal stem cells derived from adult adipose and lipoma tissues. Open Stem Cell J. 2009;1:1–9. doi:10.2174/1876893800901010001.CrossRefGoogle Scholar
  6. 6.
    Grundberg E, Brändström H, Lam KC, Gurd S, Ge B, Harmsen E, et al. Systematic assessment of the human osteoblast transcriptome in resting and induced primary cells. Physiol Genomics. 2008;33:301–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuo N, Yu-Hua W, Sumiyoshi H, Sakata-Takatani K, Nagato H, Sakai K, et al. The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human alpha 1(XI) collagen gene (COL11A1). J Biol Chem. 2003;278:32763–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Hida M, Hamanaka R, Okamoto O, Yamashita K, Sasaki T, Yoshioka H, et al. Nuclear factor Y (NF-Y) regulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim. 2014;50:358–66. doi:10.1007/s11626-013-9692-3.CrossRefPubMedGoogle Scholar
  9. 9.
    Kahler RA, Yingst SM, Hoeppner LH, Jensen ED, Krawczak D, Oxford JT, et al. Collagen 11a1 is indirectly activated by lymphocyte enhancer-binding factor 1 (Lef1) and negatively regulates osteoblast maturation. Matrix Biol. 2008;27:330–8. doi:10.1016/j.matbio.2008.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Emura M, Ochiai A, Horino M, Arndt W, Kamino K, Hirohashi S. Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1. In Vitro Cell Dev Biol Anim. 2000;36:77–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–9. doi:10.1158/0008-5472.CAN-08-0943.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gardner H, Strehlow D, Bradley L, Widom R, Farina A, de Fougerolles A, et al. Global expression analysis of the fibroblast transcriptional response to TGFbeta. Clin Exp Rheumatol. 2004;22(3 Suppl 33):S47–57.PubMedGoogle Scholar
  14. 14.
    Wu YH, Chang TH, Huang YF, Huang HD, Chou CY. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene. 2014;33:3432–40. doi:10.1038/onc.2013.307.CrossRefPubMedGoogle Scholar
  15. 15.
    Oliveira FS, Bellesini LS, Defino HL, da Silva Herrero CF, Beloti MM, Rosa AL. Hedgehog signaling and osteoblast gene expression are regulated by purmorphamine in human mesenchymal stem cells. J Cell Biochem. 2012;113:204–8. doi:10.1002/jcb.23345.CrossRefPubMedGoogle Scholar
  16. 16.
    Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107:20009–14. doi:10.1073/pnas.1013805107.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mishra P, Banerjee D, Ben-Baruch A. Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol. 2011;89:31–9. doi:10.1189/jlb.0310182.CrossRefPubMedGoogle Scholar
  18. 18.
    Margolin DA, Silinsky J, Grimes C, Spencer N, Aycock M, Green H, et al. Lymph node stromal cells enhance drug-resistant colon cancer cell tumor formation through SDF-1α/CXCR4 paracrine signaling. Neoplasia. 2011;13:874–86.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Polanska UM, Orimo A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol. 2013;228:1651–7. doi:10.1002/jcp.24347.CrossRefPubMedGoogle Scholar
  20. 20.
    Fischer H, Salahshor S, Stenling R, Björk J, Lindmark G, Iselius L, Rubio C, Lindblom A. COL11A1 in FAP polyps and in sporadic colorectal tumors. BMC Cancer 2001;1:17. http://www.biomedcentral.com/1471-2407/1/17.
  21. 21.
    Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A, et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med. 2008;12:2823–35.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008;14:5995–6004. doi:10.1158/1078-0432.CCR-08-0291.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A. 2009;106:4254–9. doi:10.1073/pnas.0813203106.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gene Expression Atlas- Summary for COL11A1 (Homo sapiens). http://www-test.ebi.ac.uk/gxa/gene/ENSG00000060718. Accessed 23 Dec 2014.
  25. 25.
    Lin PP, Wang Y, Lozano G. Mesenchymal stem cells and the origin of Ewing’s sarcoma. Sarcoma. 2011;pii:276463. doi: 10.1155/2011/276463.
  26. 26.
    Hajdu M, Singer S, Maki RG, Schwartz GK, Keohan ML, Antonescu CR. IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting. J Pathol. 2010;221:300–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    An JH, Lee SY, Jeon JY, Cho KG, Kim SU, Lee MA. Identification of gliotropic factors that induce human stem cell migration to malignant tumor. J Proteome Res. 2009;8:2873–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Chernov AV, Baranovskaya S, Golubkov VS, Wakeman DR, Snyder EY, Williams R, et al. Microarray-based transcriptional and epigenetic profiling of matrix metalloproteinases, collagens, and related genes in cancer. J Biol Chem. 2010;285:19647–59.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pope WB, Mirsadraei L, Lai A, Eskin A, Qiao J, Kim HJ, et al. Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. AJNR Am J Neuroradiol. 2012;33:1059–64. doi:10.3174/ajnr.A2917.CrossRefPubMedGoogle Scholar
  30. 30.
    Seemann L, Shulman J, Gunaratne GH. A robust topology-based algorithm for gene expression profiling. ISRN Bioinformatics 2012; Article ID 381023. doi:10.5402/2012/381023.
  31. 31.
    Chen W, Fu X, Sun X, Sun T, Zhao Z, Sheng Z. Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res. 2003;113:208–16.CrossRefPubMedGoogle Scholar
  32. 32.
    Seifert O, Bayat A, Geffers R, Dienus K, Buer J, Löfgren S, et al. Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen. 2008;16:254–65. doi:10.1111/j.1524-475X.2007.00343.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Yagi Y, Muroga E, Naitoh M, Isogai Z, Matsui S, Ikehara S, et al. An ex vivo model employing keloid-derived cell-seeded collagen sponges for therapy development. J Investig Dermatol. 2013;133:386–93. doi:10.1038/jid.2012.314.CrossRefPubMedGoogle Scholar
  34. 34.
    Gardner H, Shearstone JR, Bandaru R, Crowell T, Lynes M, Trojanowska M, et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum. 2006;54:1961–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Togo S, Polanska UM, Horimoto Y, Orimo A. Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers (Basel). 2013;5:149–69. doi:10.3390/cancers5010149.CrossRefGoogle Scholar
  36. 36.
    Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009;3:287–310. doi:10.1007/s12079-009-0075-1.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A. 2010;107:14170–5. doi:10.1073/pnas.1009426107.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mifflin RC, Pinchuk IV, Saada JI, Powell DW. Intestinal myofibroblasts: targets for stem cell therapy. Am J Physiol Gastrointest Liver Physiol. 2011;300:G684–96. doi:10.1152/ajpgi.00474.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nishioka Y, Azuma M, Kishi M, Aono Y. Targeting platelet-derived growth factor as a therapeutic approach in pulmonary fibrosis. J Med Invest. 2013;60:175–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Keane FM, Yao TW, Seelk S, Gall MG, Chowdhury S, Poplawski SE, et al. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs. FEBS Open Bio. 2013;4:43–54. doi:10.1016/j.fob.2013.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rönty M. Palladin, a novel microfilament protein. PhD thesis. University of Helsinki, Department of Pathology; 2008.Google Scholar
  42. 42.
    Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166:913–21.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fuentes-Martínez N, García-Pravia C, García-Ocaña M, Menéndez-Rodríguez P, Del Amo J, Suárez-Fernández L, et al. Overexpression of proCOL11A1 as a stromal marker of breast cancer. Histol Histopathol. 2015;30:87–93.PubMedGoogle Scholar
  44. 44.
    Erkan M, Weis N, Pan Z, Schwager C, Samkharadze T, Jiang X, et al. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer 2010;9:88. http://www.molecular-cancer.com/content/9/1/88.
  45. 45.
    Prenzel KL, Ribati M, Warnecke-Ebers U, Stöcklein N, Vallböhmer D, Stippel D, et al. Differential expression of COL11A1 in chronic pancreatitis and periampullary adenocarcinomas. Deut Ges Chir. 2009;38:209–10. Chirurgisches Forum und DGAV Forum 2009.Google Scholar
  46. 46.
    Dooley TP, Curto EV, Reddy SP, Davis RL, Lambert GW, Wilborn TW, et al. Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays. Inflamm Bowel Dis. 2004;10:1–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumor Biol. 2014;35:2871–82. doi:10.1007/s13277-013-1511-7.CrossRefGoogle Scholar
  48. 48.
    Schmalbach CE, Chepeha DB, Giordano TJ, Rubin MA, Teknos TN, Bradford CR, et al. Molecular profiling and the identification of genes associated with metastatic oral cavity/pharynx squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130:295–302.CrossRefPubMedGoogle Scholar
  49. 49.
    Sok JC, Kuriakose MA, Mahajan VB, Pearlman AN, DeLacure MD, Chen FA. Tissue-specific gene expression of head and neck squamous cell carcinoma in vivo by complementary DNA microarray analysis. Arch Otolaryngol Head Neck Surg. 2003;129:760–70.CrossRefPubMedGoogle Scholar
  50. 50.
    Sok JC, Lee JA, Dasari S, Joyce S, Contrucci SC, Egloff AM, et al. Collagen type XI α1 facilitates head and neck squamous cell cancer growth and invasion. Br J Cancer. 2013;109:3049–56. doi:10.1038/bjc.2013.624.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fuentes-Martínez N. Colágeno 11: nuevo marcador en el cáncer de mama. PhD thesis. Universidad de Oviedo, Surgery and Medical Surgical Specialities Department; 2009.Google Scholar
  52. 52.
    Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Transcriptional evidence for the “reverse Warburg effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “neuron-glia metabolic coupling”. Aging (Albany NY). 2010;2:185–99.CrossRefGoogle Scholar
  53. 53.
    Planche A, Bacac M, Provero P, Fusco C, Delorenzi M, Stehle JC, et al. Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS ONE. 2011;6:e18640. doi:10.1371/journal.pone.0018640.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    García-Ocaña M, Vázquez F, García-Pravia C, Fuentes-Martínez N, Menéndez-Rodríguez P, Fresno-Forcelledo F, et al. Characterization of a novel mouse monoclonal antibody, clone 1E8.33, highly specific for human procollagen 11A1, a tumor-associated stromal component. Int J Oncol. 2012;40:1447–54. doi:10.3892/ijo.2012.1360.PubMedGoogle Scholar
  55. 55.
    Freire J, Domínguez-Hormaetxe S, Pereda S, De Juan A, Vega A, Simón L, Gómez-Román J. Collagen, type XI, alpha 1: an accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol Res Pract. 2014; pii: S0344-0338(14)00225-8. doi: 10.1016/j.prp.2014.07.012.
  56. 56.
    Wang KK, Liu N, Radulovich N, Wigle DA, Johnston MR, Shepherd FA, et al. Novel candidate tumor marker genes for lung adenocarcinoma. Oncogene. 2002;21:7598–604.CrossRefPubMedGoogle Scholar
  57. 57.
    Chong IW, Chang MY, Chang HC, Yu YP, Sheu CC, Tsai JR, et al. Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol Rep. 2006;16:981–8.PubMedGoogle Scholar
  58. 58.
    Fuentes N, Pravia CG, Rodriguez PM, Toyos JR D l, Ocana MG, Del Amo J, et al. Anticol11a1 a marker of infiltration in bronchioloalveolar lung carcinoma. Virchows Arch. 2010;457:230.Google Scholar
  59. 59.
    Sun Y, Wang L, Jiang M, Huang J, Liu Z, Wolfl S. Secreted phosphoprotein 1 upstream invasive network construction and analysis of lung adenocarcinoma compared with human normal adjacent tissues by integrative biocomputation. Cell Biochem Biophys. 2010;56:59–71. doi:10.1007/s12013-009-9071-6.CrossRefPubMedGoogle Scholar
  60. 60.
    Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A. 2011;108:7160–5. doi:10.1073/pnas.1014506108.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Xu SH, Qian LJ, Mou HZ, Zhu CH, Zhou XM, Liu XL, et al. Difference of gene expression profiles between esophageal carcinoma and its pericancerous epithelium by gene chip. World J Gastroenterol. 2003;9:417–22.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Vecchi M, Nuciforo P, Romagnoli S, Confalonieri S, Pellegrini C, Serio G, et al. Gene expression of early and advanced gastric cancer. Oncogene. 2007;26:4284–94.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhao Y, Zhou T, Li A, Yao H, He F, Wang L, et al. A potential role of collagens expression in distinguishing between premalignant and malignant lesions in stomach. Anat Rec. 2009;292:692–700.CrossRefGoogle Scholar
  64. 64.
    Barneo L, del Amo J, García-Pravia C, Toyos JR D l, Pérez-Basterrechea M, González-Pinto I, et al. Identification of specific genes by microarrays, validation and use of polyclonal antibodies in pancreatic cancer: preliminary results. In: Vollmar B, editor. 41st congress of the European society for surgical research-ESSR 2006. Bologna: Medimond, International Proceedings; 2006. p. 27–35.Google Scholar
  65. 65.
    del Amo-Iribarren J. Identificación de marcadores para diagnóstico diferencial y potenciales dianas terapéuticas en adenocarcinoma ductal de páncreas mediante herramientas genómicas. PhD thesis. Universidad del País Vasco, Genetics, Physical Anthropology and Animal Physiology Department; 2006.Google Scholar
  66. 66.
    García-Pravia C, Galván JA, Gutiérrez-Corral N, Solar-García L, García-Pérez E, García-Ocaña M, et al. Overexpression of COL11A1 by cancer-associated fibroblasts: clinical relevance of a stromal marker in pancreatic cancer. PLoS ONE. 2013;8:e78327. doi:10.1371/journal.pone.0078327.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fischer H, Stenling R, Rubio C, Lindblom A. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis. 2001;22:875–8. doi:10.1093/carcin/22.6.875.CrossRefPubMedGoogle Scholar
  68. 68.
    Croner RS, Foertsch T, Brueckl WM, Guenther K, Siebenhaar R, Stremmel C, et al. Common denominator genes that distinguish colorectal carcinoma from normal mucosa. Int J Color Dis. 2005;20:353–62.CrossRefGoogle Scholar
  69. 69.
    Lascorz J, Hemminki K, Försti A. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development. J Carcinog. 2011;10:7. doi:10.4103/1477-3163.78268.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cueva-Cayetano R, Galvan-Hernandez JÁ, Suarez-Fernandez L, Menendez-Rodriguez MP, Garcia-Pravia C, Barneo L. Preliminary analysis of collagen, type XI, alpha 1 (COL11A1), inhibin alpha (INHBA) and secreted protein acidic and rich in cysteine (SPARC, osteonectin) as potential markers of colon cancer [abstract]. Brit J Surg. 2013;100 Suppl 1:7.Google Scholar
  71. 71.
    Galván JA, García-Martínez J, Vázquez-Villa F, García-Ocaña M, García-Pravia C, Menéndez-Rodríguez P, et al. Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma. BMC Cancer. 2014;14:867. doi:10.1186/1471-2407-14-867.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, et al. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res. 2014;20:711–23. doi:10.1158/1078-0432.CCR-13-1256.CrossRefPubMedGoogle Scholar
  73. 73.
    Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res. 2006;66:5278–86.CrossRefPubMedGoogle Scholar
  74. 74.
    Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11:R7. doi:10.1186/bcr2222.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, et al. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res. 2012;72:4574–86. doi:10.1158/0008-5472.CAN-12-0636.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Castellana B, Escuin D, Peiró G, Garcia-Valdecasas B, Vázquez T, Pons C, et al. ASPN and GJB2 are implicated in the mechanisms of invasion of ductal breast carcinomas. J Cancer. 2012;3:175–83. doi:10.7150/jca.4120.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Vargas AC, McCart Reed AE, Waddell N, Lane A, Reid LE, Smart CE, et al. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat. 2012;135:153–65. doi:10.1007/s10549-012-2123-4.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhu TX, Lan B, Meng LY, Yang YL, Li RX, Li EM, et al. ECM-related gene expression profile in vascular smooth muscle cells from human saphenous vein and internal thoracic artery. J Cardiothorac Surg. 2013;8:155. doi:10.1186/1749-8090-8-155.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A, Botbyl J, Hammond R, Katsaros D, et al. Tumor vascular proteins as biomarkers in ovarian cancer. J Clin Oncol. 2007;25:852–61.CrossRefPubMedGoogle Scholar
  80. 80.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8. doi:10.1172/JCI39104.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37. doi:10.1172/JCI36183.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4:1591–613.CrossRefPubMedGoogle Scholar
  83. 83.
    Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008;55:2016–27.PubMedGoogle Scholar
  84. 84.
    Anastassiou D, Rumjantseva V, Cheng W, Huang J, Canoll PD, Yamashiro DJ, Kandel JJ. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo. BMC Cancer 2011; 11:529. http://www.biomedcentral.com/1471-2407/11/529.
  85. 85.
    Xu Z, Vonlaufen A, Phillips PA, Fiala-Beer E, Zhang X, Yang L, et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol. 2010;177:2585–96. doi:10.2353/ajpath.2010.090899.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, Byers SW. Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res. 1999;59:947–52.PubMedGoogle Scholar
  87. 87.
    Chu K, Cheng CJ, Ye X, Lee YC, Zurita AJ, Chen DT, et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res. 2008;6:1259–67.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, et al. Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res. 2010;70:4580–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kim H, Watkinson J, Varadan V, Anastassiou D. Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics 2010;3:51. http://www.biomedcentral.com/1755-8794/3/51.
  91. 91.
    Suzuki M, Tarin D. Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications. Mol Oncol. 2007;1:172–80. doi:10.1016/j.molonc.2007.03.005.CrossRefPubMedGoogle Scholar
  92. 92.
    Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C, et al. Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat. 2007;103:319–29.CrossRefPubMedGoogle Scholar
  93. 93.
    Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, et al. A gene expression signature that defines breast cancer metastases. Clin Exp Metastasis. 2009;26:205–13. doi:10.1007/s10585-008-9232-9.CrossRefPubMedGoogle Scholar
  94. 94.
    Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 2009;8:90. doi:10.1186/1476-4598-8-90.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    López-Lago MA, Thodima VJ, Guttapalli A, Chan T, Heguy A, Molina AM, et al. Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression. Cancer Res. 2010;70:9682–92. doi:10.1158/0008-5472.CAN-10-2279.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    ArrayExpress Experiment E-MTAB-37. Transcription profiling of human multiple cancer cell lines (950 samples). http://www-test.ebi.ac.uk/gxa/experiment/E-MTAB-37/ENSG00000060718?ef=cell_line. Accessed 23 Dec 2014.
  97. 97.
    Raglow Z, Thomas SM. Tumor matrix protein collagen XIα1 in cancer. Cancer Lett. 2015;357:448–53. doi:10.1016/j.canlet.2014.12.011.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Fernando Vázquez-Villa
    • 1
    • 2
  • Marcos García-Ocaña
    • 2
    • 3
  • José A. Galván
    • 1
    • 2
    • 6
  • Jorge García-Martínez
    • 1
    • 2
  • Carmen García-Pravia
    • 2
    • 4
  • Primitiva Menéndez-Rodríguez
    • 4
  • Carmen González-del Rey
    • 4
  • Luis Barneo-Serra
    • 1
    • 2
  • Juan R. de los Toyos
    • 2
    • 5
    • 7
  1. 1.Surgery Department, School of Medicine and Health SciencesUniversity of OviedoOviedoSpain
  2. 2.Oncology University Institute of the Principality of Asturias (IUOPA)OviedoSpain
  3. 3.Preparative Biotechnology Unit, Technical-Scientific ServicesUniversity of OviedoOviedoSpain
  4. 4.Pathological Anatomy ServiceAsturias Central University Hospital (HUCA)OviedoSpain
  5. 5.Immunology Department, School of Medicine and Health SciencesUniversity of OviedoOviedoSpain
  6. 6.Translational Research Unit (TRU), Institute of PathologyUniversity of BernBernSwitzerland
  7. 7.Área de Inmunología, Facultad de Medicina y Ciencias de la SaludUniversidad de OviedoOviedoSpain

Personalised recommendations