Tumor Biology

, Volume 36, Issue 8, pp 5901–5911 | Cite as

Proliferative role of TRAF4 in breast cancer by upregulating PRMT5 nuclear expression

  • Fan Yang
  • Jian Wang
  • Hua-yan Ren
  • Juan Jin
  • Ai-lian Wang
  • Li-li Sun
  • Ke-xin Diao
  • En-hua Wang
  • Xiao-yi MiEmail author
Research Article


In this study, we examined protein arginine methyltransferase 5 (PRMT5) and tumor necrosis factor receptor-associated 4 (TRAF4) expression in breast cancer to find the interaction mechanism between the two. We examined TRAF4 and PRMT5 expression by immunohistochemistry and found that their expression is positively correlated in breast cancer. Besides, PRMT5 expression was significantly associated with histological type and tumor size (p < 0.05). PRMT5 nuclear expression was significantly associated with HER2 expression (p < 0.05). PRMT5 and TRAF4 were both overexpressed in breast cancer tissues and cells, and we found that PRMT5 binds to the zinc finger structures in TRAF4 by coimmunoprecipitation and Western blotting. We also tested the potential regulatory effect between TRAF4 and PRMT5. TRAF4 upregulated PRMT5 expression, which occurred predominantly in the nucleus, on which TRAF4 promotion of cell proliferation in breast cancer is mainly dependent. PRMT5 may play an important role in activation of the NF-κB signaling pathway.


TRAF4 PRMT5 Breast cancer NF-κB Cell proliferation 



Tumor necrosis factor receptor-associated factor 4


Protein arginine methyltransferases 5



We thank Dr. Bert W. O’Malley (Baylor College of Medicine) for kindly providing plasmid for Zn fingers domain deletion mutant (Flag-△Zn-TRAF4). This work was supported by a grant from the Educational Commission of Liaoning Province of China (L2014302) and the Doctoral Program of Higher Education, China (20112104110017).

Conflicts of interest


Supplementary material

13277_2015_3262_MOESM1_ESM.pdf (127 kb)
Fig. S1 PRMT5 did not influence TRAF4 expression. Western blot analyses showing that MCF-7 cells expressing the PRMT5 plasmid did not influence TRAF4 expression obviously, consistent with the finding that PRMT5 depletion by siRNA in MDA-MB-231 cells (p > 0.05). (PDF 127 kb)


  1. 1.
    Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal. 2001;13:389–400.CrossRefPubMedGoogle Scholar
  2. 2.
    Chung JY, Park YC, Ye H, Wu H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci. 2002;115(Pt4):679–88.PubMedGoogle Scholar
  3. 3.
    Mathew SJ, Rembold M, Leptin M. Role for Traf4 in polarizing adherens junctions as a prerequisite for efficient cell shape changes. Mol Cell Biol. 2011;31:4978–93.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mathew SJ, Kerridge S, Leptin M. A small genomic region containing several loci required for gastrulation in Drosophila. PLoS ONE. 2009;4:e7437.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kalkan T, Iwasaki Y, Park CY, Thomsen GH. Tumor necrosis factor-receptor-associated factor-4 is a positive regulator of transforming growth factor-beta signaling that affects neural crest formation. Mol Biol Cell. 2009;20:3436–50.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ahmed F, Shiraishi T, Vessella RL, Kulkarni P. Tumor necrosis factor receptor associated factor-4: an adapter protein overexpressed in metastatic prostate cancer is regulated by microRNA-29a. Oncol Rep. 2013;30(6):2963–8.PubMedGoogle Scholar
  7. 7.
    Kedinger V, Rio MC. TRAF4, the unique family member. Adv Exp Med Biol. 2007;597:60–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Regnier CH, Tomasetto C, Moog-Lutz C, et al. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem. 1995;270(43):25715–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Zapata JM, Matsuzawa S, Godzick A, Leo E, Wasserman SA, Reed JC. The drosophila tumor necrosis factor receptor-associated factor-1 (DTRAF1) interacts with pelle and regulates NFkappaB activity. J Biol Chem. 2000;275(16):12102–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Kuranaga E, Kanuka H, Igaki T, et al. Reaper-mediated inhibition of DIAPl-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nat Cell Biol. 2002;4(9):705–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Li JM, Fan LM, Christie MR, Shah AM. Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol. 2005;25(6):2320–30.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bedford MT. Arginine methylation at a glance. J Cell Sci. 2007;120(24):4243–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Ren J, Wang Y, Liang Y, Zhang Y, Bao S, Xu Z. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J Biol Chem. 2010;285(17):12695–705.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhou Z, Sun X, Zou Z, et al. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res. 2010;20(9):1023–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Dacwag CS, Bedford MT, Sif S, Imbalzano AN. Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol. 2009;29(7):1909–21.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mallappa C, Hu YJ, Shamulailatpam P, Tae S, Sif S, Imbalzano AN. The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt)5 but directly requires Prmt4. Nucleic Acids Res. 2011;39(4):1243–55.CrossRefPubMedGoogle Scholar
  17. 17.
    Eckert D, Biermann K, Nettersheim D, et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/ IGCNU and germ cell tumors. BMC Dev Biol. 2008;8:106.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tanaka H, Hoshikawa Y, Oh-hara T, et al. PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-kappaB activation. Mol Cancer Res. 2009;7(4):557–69.CrossRefPubMedGoogle Scholar
  19. 19.
    Gu Z, Li Y, Lee P, Liu T, Wan C, Wang Z. Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells. Plos One. 2012;7(8):e44033.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nicholas C, Yang J, Peters SB, et al. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27 (Kip1.). Plos One. 2013;8(9):e74710.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bao X, Zhao S, Liu T, Liu Y, Liu Y, Yang X. Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem. 2013;61(3):206–17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rozan LM, El-Deiry WS. Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol Ther. 2006;5(9):1228–35.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang X, Wen Z, Sun L, et al. TRAF2 regulates the cytoplasmic/nuclear distribution of TRAF4 and its biological function in breast cancer cells. Biochem Biophys Res Commun. 2013;436(2):344–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Harris DP, Bandyopadhyay S, Maxwell TJ, Willard B, DiCorleto PE. Tumor necrosis factor (TNF)-α induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-κB p65 methylation. J Biol Chem. 2014;289(22):15328–39.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wei H, Wang B, Miyagi M, et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proc Natl Acad Sci U S A. 2013;110(33):13516–21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Powers MA, Fay MM, Factor RE, Welm AL, Ullman KS. Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res. 2011;71(16):5579–87.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Press MF, Sauter G, Bernstein L, et al. Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin Cancer Res. 2005;11(18):6598–607.CrossRefPubMedGoogle Scholar
  28. 28.
    Salmon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.CrossRefGoogle Scholar
  29. 29.
    Pianetti S, Guo S, Kavanagh KT, Sonenshein GE. Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res. 2002;62(3):652–5.PubMedGoogle Scholar
  30. 30.
    Biswas DK, Iglehart JD. Linkage between EGFR family receptors and nuclear factor kappa B (NF-kappa B) signaling in breast cancer. J Cell Physiol. 2006;209(3):645–52.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Fan Yang
    • 1
  • Jian Wang
    • 1
  • Hua-yan Ren
    • 1
  • Juan Jin
    • 1
  • Ai-lian Wang
    • 1
  • Li-li Sun
    • 1
  • Ke-xin Diao
    • 1
  • En-hua Wang
    • 1
  • Xiao-yi Mi
    • 1
    Email author
  1. 1.Department of Pathology, First Affiliated Hospital and College of Basic Medical SciencesChina Medical UniversityShenyangChina

Personalised recommendations