Advertisement

Tumor Biology

, Volume 36, Issue 3, pp 1339–1353 | Cite as

Biomarkers and signaling pathways of colorectal cancer stem cells

  • Danysh Abetov
  • Zhanar Mustapova
  • Timur Saliev
  • Denis Bulanin
Review

Abstract

The progression of colorectal cancer is commonly characterized by accumulation of genetic or epigenetic abnormalities, altering regulation of gene expression as well as normal protein structures and functions. Nonetheless, there are some questions that remain to be elucidated, such as the origin of cancer cells and populations of cells initiating and propagating tumor development. Currently, there are two rival theories describing the process of carcinogenesis. One is the stochastic model, arguing that any cell is capable of initiating and triggering the development of cancer. Meanwhile, the cancer stem cell model hypothesizes that only a small fraction of stem cells possesses cancer-promoting properties. Typically, colorectal cancer stem cells (CSCs) share the same molecular signaling profiles with normal stem cells or embryonic stem cells, such as Wnt, Notch, TGF-β, and Hedgehog. Nevertheless, CSCs differ from normal stem cells and the bulk of tumor cells in their tumorigenic potential and susceptibility to chemotherapeutic drugs. This may be a possible explanation of the high percentage of cancer recurrence in patients who underwent chemotherapeutic treatment and surgery. This review article focuses on the colorectal cancer stem cell biomarkers and the role of upregulated signaling pathways implicated in the initiation and progression of colorectal cancer.

Keywords

Colorectal cancer Carcinogenesis Stem cells Biomarkers Signaling pathways 

Notes

Acknowledgments

The authors are thankful for the financial support provided through the grant “Analysis of gene expression for different stages of colorectal cancer” (“Programme-targeted funding 2014-2017”; Government of the Republic of Kazakhstan).

Conflicts of interest

None

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int Cancer. 2014;136(5):E359–86.Google Scholar
  2. 2.
    Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12:133–43.PubMedGoogle Scholar
  3. 3.
    Cohnheim J. Congenitales, quergestreiftes muskelsarkom der nieren. Arch Pathol Anat Physiol Klin Med. 1875;65:64–9.Google Scholar
  4. 4.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.PubMedGoogle Scholar
  5. 5.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.PubMedGoogle Scholar
  6. 6.
    Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23:7274–82.PubMedGoogle Scholar
  7. 7.
    Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100:3547–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedGoogle Scholar
  9. 9.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.PubMedGoogle Scholar
  10. 10.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.PubMedGoogle Scholar
  12. 12.
    Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al. Identification of cells initiating human melanomas. Nature. 2008;451:345–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13:153–66.PubMedGoogle Scholar
  14. 14.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.PubMedGoogle Scholar
  15. 15.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.PubMedGoogle Scholar
  16. 16.
    Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27:2875–83.PubMedGoogle Scholar
  17. 17.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.PubMedGoogle Scholar
  18. 18.
    Dick J. Are cancer stem cells relevant? EJC Suppl. 2010;8:9–9.Google Scholar
  19. 19.
    O'Brien CA, Pollett A, Gallinger S, Dick JE. Expression of CD133 enriches for colon cancer stem cells. Ann Surg Oncol. 2007;14:22.Google Scholar
  20. 20.
    Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14:342–56.PubMedGoogle Scholar
  21. 21.
    Maugeri-Sacca M, Vici P, Di Lauro L, Barba M, Amoreo CA, Gallo E, et al. Cancer stem cells: are they responsible for treatment failure? Future Oncol. 2014;10:2033–44.PubMedGoogle Scholar
  22. 22.
    Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R. Colon cancer stem cells. J Mol Med Jmm. 2009;87:1097–104.Google Scholar
  23. 23.
    Choi G, Sammar M, Altevogt P. Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol. 2004;35:255–62.Google Scholar
  24. 24.
    Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity. 2010;32:129–40.PubMedGoogle Scholar
  25. 25.
    Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. CD19(+)CD24(hi)CD38(hi) B cells maintain regulatory T cells while limiting T(H)1 and T(H)17 differentiation. Sci Transl Med. 2013;5:12.Google Scholar
  26. 26.
    Elghetany MT, Patel J. Assessment of CD24 expression on bone marrow neutrophilic granulocytes: CD24 is a marker for the myelocytic stage of development. Am J Hematol. 2002;71:348–9.PubMedGoogle Scholar
  27. 27.
    Choi D, Lee HW, Hur KY, Kim JL, Park GS, Jang SH, et al. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol. 2009;15:2258–64.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005;65:10783–93.PubMedGoogle Scholar
  29. 29.
    Papailiou J, Bramis KJ, Gazouli M, Theodoropoulos G. Stem cells in colon cancer. A new era in cancer theory begins. Int J Color Dis. 2011;26:1–11.Google Scholar
  30. 30.
    Pro B, Dang NH. CD26/dipeptidyl peptidase IV and its role in cancer. Histol Histopathol. 2004;19:1345–51.PubMedGoogle Scholar
  31. 31.
    Rasmussen HB, Branner S, Wiberg FC, Wagtmann N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol. 2003;10:19–25.PubMedGoogle Scholar
  32. 32.
    Dang NH, Torimoto Y, Shimamura K, Tanaka T, Daley JF, Schlossman SF, et al. 1F7 (CD26): a marker of thymic maturation involved in the differential regulation of the CD3 and CD2 pathways of human thymocyte activation. J Immunol. 1991;147:2825–32.PubMedGoogle Scholar
  33. 33.
    Proost P, De Meester I, Schols D, Struyf S, Lambeir AM, Wuyts A, et al. Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1-infection. J Biol Chem. 1998;273:7222–7.PubMedGoogle Scholar
  34. 34.
    Christopherson 2nd KW, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305:1000–3.PubMedGoogle Scholar
  35. 35.
    Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6:603–15.PubMedGoogle Scholar
  36. 36.
    Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24:645–51.PubMedGoogle Scholar
  37. 37.
    Fujimoto K, Beauchamp RD, Whitehead RH. Identification and isolation of candidate human colonic clonogenic cells based on cell surface integrin expression. Gastroenterology. 2002;123:1941–8.PubMedGoogle Scholar
  38. 38.
    Kemper K, Grandela C, Medema JP. Molecular identification and targeting of colorectal cancer stem cells. Oncotarget. 2010;1:387–95.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Langan RC, Mullinax JE, Ray S, Raiji MT, Schaub N, Xin HW, et al. A pilot study assessing the potential role of non-CD133 colorectal cancer stem cells as biomarkers. J Cancer. 2012;3:231–40.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Langan RC, Mullinax JE, Raiji MT, Upham T, Summers T, Stojadinovic A, et al. Colorectal cancer biomarkers and the potential role of cancer stem cells. J Cancer. 2013;4:241–50.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kanwar SS, Yu YJ, Nautiyal J, Patel BB, Majumdar APN. The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer. 2010;9:13.Google Scholar
  42. 42.
    Sneath RJS, Mangham DC. The normal structure and function of CD44 and its role in neoplasia. J Clin Pathol Mol Pathol. 1998;51:191–200.Google Scholar
  43. 43.
    Fanali C, Lucchetti D, Farina M, Corbi M, Cufino V, Cittadini A, et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World J Gastroenterol. 2014;20:923–42.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang XH, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158–63.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Du L, Wang HY, He LY, Zhang JY, Ni BY, Wang XH, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751–60.PubMedGoogle Scholar
  46. 46.
    Lugli A, Iezzi G, Hostettler I, Muraro MG, Mele V, Tornillo L, et al. Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer. 2010;103:382–90.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Fan CW, Chen T, Shang YN, Gu YZ, Zhang SL, Lu R, et al. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies. Cell Death Dis. 2013;4.Google Scholar
  48. 48.
    Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 2004;95:930–5.PubMedGoogle Scholar
  49. 49.
    Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90:5013–21.PubMedGoogle Scholar
  50. 50.
    Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science. 2006;313:1785–7.PubMedGoogle Scholar
  51. 51.
    Zhang MY, Song T, Yang L, Chen RK, Wu L, Yang ZY, et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008;27:7.Google Scholar
  52. 52.
    Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer CD133(+) cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. 2009;106:16281–6.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Tang KH, Ma S, Lee TK, Chan YP, Kwan PS, Tong CM, et al. CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology. 2012;55:807–20.PubMedGoogle Scholar
  54. 54.
    Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004;117:3539–45.PubMedGoogle Scholar
  55. 55.
    Horst D, Kriegl L, Engel J, Kirchner T, Jung A. CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer. 2008;99:1285–9.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229:355–78.PubMedGoogle Scholar
  57. 57.
    O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedGoogle Scholar
  58. 58.
    Zhu LQ, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–U114.PubMedGoogle Scholar
  59. 59.
    Kemper K, Versloot M, Cameron K, Colak S, Melo FDE, de Jong JH, et al. Mutations in the Ras-Raf Axis underlie the prognostic value of CD133 in colorectal cancer. Clin Cancer Res. 2012;18:3132–41.PubMedGoogle Scholar
  60. 60.
    Corbo C, Orrù S, Gemei M, Noto RD, Mirabelli P, Imperlini E, et al. Protein cross‐talk in CD133+ colon cancer cells indicates activation of the Wnt pathway and upregulation of SRp20 that is potentially involved in tumorigenicity. Proteomics. 2014;12:2045–59.Google Scholar
  61. 61.
    Mohammadi M, Bzorek M, Bonde JH, Nielsen HJ, Holck S. The stem cell marker CD133 is highly expressed in sessile serrated adenoma and its borderline variant compared with hyperplastic polyp. J Clin Pathol. 2013;66:403–8.PubMedGoogle Scholar
  62. 62.
    Arena V, Caredda E, Cufino V, Stigliano E, Scaldaferri F, Gasbarrini A, et al. Differential CD133 expression pattern during mouse colon tumorigenesis. Anticancer Res. 2011;31:4273–5.PubMedGoogle Scholar
  63. 63.
    Sgambato A, Corbi M, Svelto M, Caredda E, Cittadini A. New insights into the cd133 (prominin-1) expression in mouse and human colon cancer cells; in Corbeil D (ed) Prominin-1. New York, Springer. 2013. vol 777, pp 145–166Google Scholar
  64. 64.
    Yi JM, Tsai HC, Glockner SC, Lin S, Ohm JE, Easwaran H, et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 2008;68:8094–103.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Ong CW, Kim LG, Kong HH, Low LY, Iacopetta B, Soong R, et al. CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod Pathol. 2010;23:450–7.PubMedGoogle Scholar
  66. 66.
    Kojima M, Ishii G, Atsumi N, Fujii S, Saito N, Ochiai A. Immunohistochemical detection of CD133 expression in colorectal cancer: a clinicopathological study. Cancer Sci. 2008;99:1578–83.PubMedGoogle Scholar
  67. 67.
    Kawamoto A, Tanaka K, Saigusa S, Toiyama Y, Morimoto Y, Fujikawa H, et al. Clinical significance of radiation-induced CD133 expression in residual rectal cancer cells after chemoradiotherapy. Exp Ther Med. 2012;3:403–9.PubMedGoogle Scholar
  68. 68.
    Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Investig. 2008;118:2111–20.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Feng JM, Miao ZH, Jiang Y, Chen Y, Li JX, Tong LJ, et al. Characterization of the conversion between CD133(+) and CD133(−) cells in colon cancer SW620 cell line. Cancer Biol Ther. 2012;13:1396–406.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Mao Q, Zhang Y, Fu XY, Xue JX, Guo WH, Meng MB, et al. A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy. J Cancer Res Clin Oncol. 2013;139:211–22.PubMedGoogle Scholar
  71. 71.
    Weidle UH, Eggle D, Klostermann S, Swart GW. ALCAM/CD166: cancer-related issues. Cancer Genomics Proteomics. 2010;7:231–43.PubMedGoogle Scholar
  72. 72.
    Ohneda O, Ohneda K, Arai F, Lee J, Miyamoto T, Fukushima Y, et al. ALCAM (CD166): its role in hematopoietic and endothelial development. Blood. 2001;98:2134–42.PubMedGoogle Scholar
  73. 73.
    Halfon S, Abramov N, Grinblat B, Ginis I. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev. 2011;20:53–66.PubMedGoogle Scholar
  74. 74.
    Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma SM, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.PubMedGoogle Scholar
  75. 75.
    Burkhardt M, Mayordomo E, Winzer KJ, Fritzsche F, Gansukh T, Pahl S, et al. Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J Clin Pathol. 2006;59:403–9.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Mezzanzanica D, Fabbi M, Bagnoli M, Staurengo S, Losa M, Balladore E, et al. Subcellular localization of activated leukocyte cell adhesion molecule is a molecular predictor of survival in ovarian carcinoma patients. Clin Cancer Res. 2008;14:1726–33.PubMedGoogle Scholar
  77. 77.
    Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappa B signalling. Nat Commun. 2011;2:13.Google Scholar
  78. 78.
    Levin TG, Powell AE, Davies PS, Silk AD, Dismuke AD, Anderson EC, et al. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology. 2010;139:2072–U2378.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Weichert W, Knosel T, Bellach J, Dietel M, Kristiansen G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol. 2004;57:1160–4.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Horst D, Kriegl L, Engel J, Kirchner T, Jung A. Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Investig. 2009;27:844–50.Google Scholar
  81. 81.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Subramaniam D, Ramalingam S, Houchen CW, Anant S. Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini-Rev Med Chem. 2010;10:359–71.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Deng S, Yang XJ, Lassus H, Liang S, Kaur S, Ye QR, et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLos ONE. 2010;5(4):e10277.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009;69:3382–9.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Shenoy A, Butterworth E, Huang EH. ALDH as a marker for enriching tumorigenic human colonic stem cells. Methods Mol Biol (Clifton, NJ). 2012;916:373–85.Google Scholar
  86. 86.
    Park IK, Qian DL, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.PubMedGoogle Scholar
  87. 87.
    Molofsky AV, Pardal R, Iwashita T, Park I-K, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.PubMedGoogle Scholar
  89. 89.
    Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7:299–313.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.PubMedGoogle Scholar
  91. 91.
    Li Z, Cao R, Wang M, Myers MP, Zhang Y, Xu R-M. Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. J Biol Chem. 2006;281:20643–9.PubMedGoogle Scholar
  92. 92.
    Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–U148.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40:915–20.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Dovey JS, Zacharek SJ, Kim CF, Lees JA. Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci U S A. 2008;105:11857–62.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7:86–95.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Lukacs RU, Memarzadeh S, Wu H, Witte ON. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7:682–93.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Bruggeman SWM, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell. 2007;12:328–41.PubMedGoogle Scholar
  98. 98.
    Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature. 2004;428:337–41.PubMedGoogle Scholar
  99. 99.
    Maynard MA, Ferretti R, Hilgendorf KI, Perret C, Whyte P, Lees JA. Bmi1 is required for tumorigenesis in a mouse model of intestinal cancer. Oncogene. 2014;33:3742–7.PubMedGoogle Scholar
  100. 100.
    Kim JH, Yoon SY, Kim CN, Joo JH, Moon SK, Choe IS, et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett. 2004;203:217–24.PubMedGoogle Scholar
  101. 101.
    Du J, Li Y, Li J, Zheng J. Polycomb group protein Bmi1 expression in colon cancers predicts the survival. Med Oncol. 2010;27:1273–6.PubMedGoogle Scholar
  102. 102.
    Tateishi K, Ohta M, Kanai F, Guleng B, Tanaka Y, Asaoka Y, et al. Dysregulated expression of stem cell factor Bmi1 in precancerous lesions of the gastrointestinal tract. Clin Cancer Res. 2006;12:6960–6.PubMedGoogle Scholar
  103. 103.
    Kreso A, Galen PV, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2013;20:29–36.PubMedGoogle Scholar
  104. 104.
    Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20:29.PubMedGoogle Scholar
  105. 105.
    Denzel S, Maetzel D, Mack B, Eggert C, Barr G, Gires O. Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer. 2009;9.Google Scholar
  106. 106.
    Trzpis M, McLaughlin PMJ, de Leij L, Harmsen MC. Epithelial cell adhesion molecule—more than a carcinoma marker and adhesion molecule. Am J Pathol. 2007;171:386–95.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer. 2007;96:417–23.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLos ONE. 2008;3(6):e2428.PubMedPubMedCentralGoogle Scholar
  109. 109.
    van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis. 2010;31:1913–21.PubMedGoogle Scholar
  110. 110.
    Sato T, Vries RG, Snippert HJ, Wetering MVD, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.PubMedGoogle Scholar
  111. 111.
    Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells. 2012;30:2378–86.PubMedGoogle Scholar
  112. 112.
    Walker F, Zhang HH, Odorizzi A, Burgess AW. Lgr5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines. PLos ONE. 2011;6(7):e22733.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Takahashi H, Ishii H, Nishida N, Takemasa I, Mizushima T, Ikeda M, et al. Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol. 2011;18:1166–74.PubMedGoogle Scholar
  114. 114.
    Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8:511–24.PubMedGoogle Scholar
  115. 115.
    Kawahara H, Imai T, Imataka H, Tsujimoto M, Matsumoto K, Okano H. Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eiF4G for PABP. J Cell Biol. 2008;181:639–53.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Battelli C, Nikopoulos GN, Mitchell JG, Verdi JM. The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21(WAF-1). Mol Cell Neurosci. 2006;31:85–96.PubMedGoogle Scholar
  117. 117.
    Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, et al. The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol. 2001;21:3888–900.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Sureban SM, May R, George RJ, Dieckgraefe BK, McLeod HL, Ramalingam S, et al. Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo. Gastroenterology. 2008;134:1448–58.PubMedGoogle Scholar
  119. 119.
    Schulenburg A, Cech P, Herbacek I, Marian B, Wrba F, Valent P, et al. CD44-positive colorectal adenoma cells express the potential stem cell markers musashi antigen (msi1) and ephrin B2 receptor (EphB2). J Pathol. 2007;213:152–60.PubMedGoogle Scholar
  120. 120.
    Ishizuya-Oka A, Shimizu K, Sakakibara S, Okano H, Ueda S. Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling. J Cell Sci. 2003;116:3157–64.PubMedGoogle Scholar
  121. 121.
    Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation. 2003;71:28–41.PubMedGoogle Scholar
  122. 122.
    Sakakibara S, Nakamura Y, Yoshida T, Shibata S, Koike M, Takano H, et al. RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci U S A. 2002;99:15194–9.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–98.PubMedGoogle Scholar
  125. 125.
    Seifert JRK, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet. 2007;8:126–38.PubMedGoogle Scholar
  126. 126.
    Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10:468–77.PubMedGoogle Scholar
  127. 127.
    Burgess AW, Faux MC, Layton MJ, Ramsay RG. Wnt signaling and colon tumorigenesis—a view from the periphery. Exp Cell Res. 2011;317:2748–58.PubMedGoogle Scholar
  128. 128.
    Nemeth MJ, Topol L, Anderson SM, Yang YZ, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci U S A. 2007;104:15436–41.PubMedPubMedCentralGoogle Scholar
  129. 129.
    MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.PubMedPubMedCentralGoogle Scholar
  130. 130.
    de Sousa EMF, Vermeulen L, Richel D, Medema JP. Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res. 2011;17:647–53.PubMedGoogle Scholar
  131. 131.
    Takemaru KI, Moon RT. The transcriptional coactivator cbp interacts with beta-catenin to activate gene expression. J Cell Biol. 2000;149:249–54.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J. 2000;19:1839–50.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 2006;7:349–59.PubMedGoogle Scholar
  134. 134.
    van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50.PubMedGoogle Scholar
  135. 135.
    Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174:715–21.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Zeilstra J, Joosten SPJ, Dokter M, Verwiel E, Spaargaren M, Pals ST. Deletion of the WNT target and cancer stem cell marker CD44 in Apc (Min/+) mice attenuates intestinal tumorigenesis. Cancer Res. 2008;68:3655–61.PubMedGoogle Scholar
  137. 137.
    van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009;136:903–12.PubMedGoogle Scholar
  138. 138.
    Munz M, Baeuerle PA, Gires O. The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res. 2009;69:5627–9.PubMedGoogle Scholar
  139. 139.
    Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol. 2009;11:162–U117.PubMedGoogle Scholar
  140. 140.
    Mak AB, Nixon AML, Kittanakom S, Stewart JM, Chen GI, Curak J, et al. Regulation of CD133 by HDAC6 promotes beta-catenin signaling to suppress cancer cell differentiation. Cell Rep. 2012;2:951–63.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Cho J-H, Dimri M, Dimri GP. A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. J Biol Chem. 2013;288:3406–18.PubMedGoogle Scholar
  142. 142.
    Krause U, Ryan DM, Clough BH, Gregory CA. An unexpected role for a Wnt-inhibitor: Dickkopf-1 triggers a novel cancer survival mechanism through modulation of aldehyde-dehydrogenase-1 activity. Cell Death Dis. 2014;5:e1093.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011;138:3593–612.PubMedGoogle Scholar
  144. 144.
    Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97–106.PubMedGoogle Scholar
  145. 145.
    Artavanis-Tsakonas S, Rand M, Lake R. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.PubMedGoogle Scholar
  146. 146.
    Gray GE, Mann RS, Mitsiadis E, Henrique D, Carcangiu ML, Banks A, et al. Human ligands of the notch receptor. Am J Pathol. 1999;154:785–94.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Kopan R, Ilagan MXG. The canonical notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–33.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian XL, Pan DJ, et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5:197–206.PubMedGoogle Scholar
  149. 149.
    Qiao L, Wong BCY. Role of notch signaling in colorectal cancer. Carcinogenesis. 2009;30:1979–86.PubMedGoogle Scholar
  150. 150.
    Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005;435:964–8.PubMedGoogle Scholar
  151. 151.
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435:959–63.PubMedGoogle Scholar
  152. 152.
    Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 2003;3:565–76.PubMedGoogle Scholar
  153. 153.
    Leong KG, Gao WQ. The notch pathway in prostate development and cancer. Differentiation. 2008;76:699–716.PubMedGoogle Scholar
  154. 154.
    Baliko F, Bright T, Poon R, Cohen B, Egan S, Alman B. Inhibition of notch signaling induces neural differentiation in Ewing sarcoma. Am J Pathol. 2007;170:1686–94.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Ramdass B, Maliekal TT, Lakshmi S, Rehman M, Rema P, Nair P, et al. Coexpression of Notch1 and NF-kappaB signaling pathway components in human cervical cancer progression. Gynecol Oncol. 2007;104:352–61.PubMedGoogle Scholar
  156. 156.
    Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65:8530–7.PubMedGoogle Scholar
  157. 157.
    Meng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB, et al. Gamma-secretase inhibitors abrogate oxaliplatin-induced activation of the notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009;69:573–82.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Zhao D, Mo Y, Li M-T, Zou S-W, Cheng Z-L, Sun Y-P, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Investig. 2014;124:5453–65.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Rezza A, Skah S, Roche C, Nadjar J, Samarut J, Plateroti M. The overexpression of the putative gut stem cell marker Musashi-1 induces tumorigenesis through Wnt and Notch activation. J Cell Sci. 2010;123:3256–65.PubMedGoogle Scholar
  160. 160.
    Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010;28:5–16.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Veenendaal LM, Kranenburg O, Smakman N, Klomp A, Rinkes I, van Diest PJ. Differential Notch and TGF beta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol. 2008;30:1–11.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Ghaleb AM, McConnell BB, Nandan MO, Katz JP, Kaestner KH, Yang VW. Haploinsufficiency of Kruppel-like factor 4 promotes adenomatous polyposis coli-dependent intestinal tumorigenesis. Cancer Res. 2007;67:7147–54.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-|[beta]| family signalling. Nature. 2003;425:577–84.PubMedGoogle Scholar
  164. 164.
    Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22:571–84.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3:807–21.PubMedGoogle Scholar
  166. 166.
    Akhurst RJ. TGF beta signaling in health and disease. Nat Genet. 2004;36:790–2. United States.PubMedGoogle Scholar
  167. 167.
    Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23:2078–93.PubMedGoogle Scholar
  168. 168.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.PubMedGoogle Scholar
  169. 169.
    Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001;114:4359–69.PubMedGoogle Scholar
  170. 170.
    Izzi L, Attisano L. Regulation of the TGF|[beta]| signalling pathway by ubiquitin-mediated degradation. Oncogene. 2004;23:2071–8.PubMedGoogle Scholar
  171. 171.
    Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.PubMedGoogle Scholar
  172. 172.
    Siegel PM, Shu W, Massague J. Mad upregulation and Id2 repression accompany transforming growth factor (TGF)-beta-mediated epithelial cell growth suppression. J Biol Chem. 2003;278:35444–50.PubMedGoogle Scholar
  173. 173.
    Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 2012;125:1259–73.PubMedPubMedCentralGoogle Scholar
  174. 174.
    McQualter JL, McCarty RC, Van der Velden J, O'Donoghu RJJ, Asselin-Labat M-L, Bozinovski S, et al. TGF-beta signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in the adult lung. Stem Cell Res. 2013;11:1222–33.PubMedGoogle Scholar
  175. 175.
    Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell. 2008;31:918–24.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-|[beta]|: implications for carcinogenesis. Oncogene. 2005;24:5742–50.PubMedGoogle Scholar
  177. 177.
    Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: genetics of development and metastasis. J Gastroenterol. 2006;41:185–92.PubMedGoogle Scholar
  178. 178.
    Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Wang J, Sun L, Myeroff L, Wang X, Gentry LE, Yang J, et al. Demonstration that mutation of the type ii transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem. 1995;270:22044–9.PubMedGoogle Scholar
  180. 180.
    Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 1996;13:343–6.PubMedGoogle Scholar
  181. 181.
    Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell. 1998;92:645–56.PubMedGoogle Scholar
  182. 182.
    Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 2004;21:491–501.PubMedGoogle Scholar
  183. 183.
    Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.PubMedGoogle Scholar
  184. 184.
    Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.PubMedGoogle Scholar
  185. 185.
    Micchelli CA, The I, Selva E, Mogila V, Perrimon N. Rasp, a putative transmembrane acyltransferase, is required for hedgehog signaling. Development. 2002;129:843–51.PubMedGoogle Scholar
  186. 186.
    Merchant AA, Matsui W. Targeting hedgehog—a cancer stem cell pathway. Clin Cancer Res. 2010;16:3130–40.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. Embo Mol Med. 2009;1:338–51.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Tanaka H, Nakamura M, Kameda C, Kubo M, Sato N, Kuroki S, et al. The Hedgehog signaling pathway plays an essential role in maintaining the CD44(+)CD24(−/low) subpopulation and the side population of breast cancer cells. Anticancer Res. 2009;29:2147–57.PubMedGoogle Scholar
  189. 189.
    Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67:2187–96.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Hayward P, Kalmar T, Arias AM. Wnt/Notch signalling and information processing during development. Development. 2008;135:411–24.PubMedGoogle Scholar
  191. 191.
    Lawrence N, Langdon T, Brennan K, Arias AM. Notch signaling targets the Wingless responsiveness of a Ubx visceral mesoderm enhancer in Drosophila. Curr Biol. 2001;11:375–85.PubMedGoogle Scholar
  192. 192.
    Brennan K, Klein T, Wilder E, Arias AM. Wingless modulates the effects of dominant negative notch molecules in the developing wing of Drosophila. Dev Biol. 1999;216:210–29.PubMedGoogle Scholar
  193. 193.
    Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33:416–21.PubMedGoogle Scholar
  194. 194.
    Chen X, Stoeck A, Lee SJ, Shih Ie M, Wang MM, Wang TL. Jagged1 expression regulated by Notch3 and Wnt/beta-catenin signaling pathways in ovarian cancer. Oncotarget. 2010;1:210–8.PubMedPubMedCentralGoogle Scholar
  195. 195.
    Alvarez-Medina R, Cayuso J, Okubo T, Takada S, Marti E. Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development. 2008;135:237–47.PubMedGoogle Scholar
  196. 196.
    van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet. 2004;36:277–82.PubMedGoogle Scholar
  197. 197.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–6.PubMedGoogle Scholar
  198. 198.
    Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011;2:135–64.PubMedPubMedCentralGoogle Scholar
  199. 199.
    van den Brink GR, Hardwick JCH. Hedgehog Wnteraction in colorectal cancer. Gut. 2006;55:912–4.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Ma J, Meng Y, Kwiatkowski DJ, Chen X, Feng H, Sun Q, et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Investig. 2010;120:103–14.PubMedGoogle Scholar
  201. 201.
    Song KY, Wang H, Krebs TL, Danielpour D. Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J. 2006;25:58–69.PubMedGoogle Scholar
  202. 202.
    Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, et al. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature. 2000;403:781–5.PubMedGoogle Scholar
  203. 203.
    Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K, et al. Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci U S A. 2008;105:4838–43.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Danysh Abetov
    • 1
  • Zhanar Mustapova
    • 1
  • Timur Saliev
    • 1
  • Denis Bulanin
    • 1
  1. 1.Department of Regenerative Medicine and Artificial Organs, Centre for Life SciencesNazarbayev UniversityAstanaKazakhstan

Personalised recommendations