Tumor Biology

, Volume 36, Issue 7, pp 5305–5313 | Cite as

Serum microRNA-145 as a novel biomarker in human ovarian cancer

  • Huichao LiangEmail author
  • Zhipeng Jiang
  • Guie Xie
  • Yan Lu
Research Article


Ovarian cancer is one of the most threatening diseases among women in the world. Current detection methods are expensive and lack accuracy. Thus, a fast, non-invasive biomarker for detecting ovarian cancer is urgently needed. Compelling evidences have been demonstrated that microRNAs, a large family of single-stranded and non-protein-coding RNA molecules, can serve as useful biomarkers in cancer detection. In this study, the relative expressions of microRNA-145 (miR-145) in the serum of patients with ovarian cancer and healthy controls were investigated in an independent study. Subsequently, the diagnosis and prognosis value of miR-145 as a biomarker for ovarian cancer were examined. Furthermore, we performed a meta-analysis to summarize all the results from published studies and this study. Relative expressions of miR-145 were investigated in three independent groups (malignant ovarian cancer, benign ovarian tumor, and healthy controls), comprising a total of 270 participants. Receiver operating characteristic (ROC) curves and overall survival (OS) curves were conducted to compare miR-145 level and clinical characteristics among the three groups. The results showed that relative expressions of the serum miR-145 were significantly down-regulated in patients with malignant ovarian cancer and benign ovarian cancer, compared to healthy controls (P < 0.01). Serum miR-145 levels could discriminate patients with malignant ovarian cancer from healthy controls, with a power area under the curve (AUC) of 0.82 (95 % confidence interval (CI) = 0.77–0.88). Furthermore, patients with low serum levels of miR-145 had a significantly shorter median overall survival rate (hazard ratio (HR) = 1.81, 95 % CI = 1.03–3.17, P = 0.039). The meta-analysis yields good diagnostic performances of miR-145 in various cancers, with an AUC of 0.82 (95 % CI, 0.78–0.85). In conclusion, the present study suggested that miR-145 can potentially serve as an outstanding biomarker for ovarian and other human cancers detection.


Ovarian cancer MicroRNA MicroRNA-145 Serum Biomarker Diagnosis Prognosis 



This work is supported by the “Mechanism of PTEN/P13K Signaling Pathway in Reconstruction of Ovary by In Situ Transplantation of Placental Mesenchymal Stem Cells” (Guangdong Health Bureau, A2013516) and “Mechanism of the Sensitizing Effect of CENP-H in Paclitaxel Chemotherapy for Breast Cancer” (National Natural Science Foundation, 81101682). The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Conflicts of interest



  1. 1.
    Bandera CA. Advances in the understanding of risk factors for ovarian cancer. J Reprod Med. 2005;50:399–406.PubMedGoogle Scholar
  2. 2.
    Ahmed FY, Wiltshaw E, A’Hern RP, Nicol B, Shepherd J, Blake P, et al. Natural history and prognosis of untreated stage I epithelial ovarian carcinoma. J Clin Oncol. 1996;14:2968–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Wright JD, Shah M, Mathew L, Burke WM, Culhane J, Goldman N, et al. Fertility preservation in young women with epithelial ovarian cancer. Cancer. 2009;115:4118–26. doi: 10.1002/cncr.24461.CrossRefPubMedGoogle Scholar
  4. 4.
    Zohny SF, Fayed ST. Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Med Oncol. 2010;27:1246–53. doi: 10.1007/s12032-009-9366-x.CrossRefPubMedGoogle Scholar
  5. 5.
    Havrilesky LJ, Whitehead CM, Rubatt JM, Cheek RL, Groelke J, He Q, et al. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence. Gynecol Oncol. 2008;110:374–82. doi: 10.1016/j.ygyno.2008.04.041.CrossRefPubMedGoogle Scholar
  6. 6.
    Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F, et al. Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol. 2010;28:2159–66. doi: 10.1200/JCO.2008.19.2484.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dodge JE, Covens AL, Lacchetti C, Elit LM, Le T, Devries-Aboud M, et al. Preoperative identification of a suspicious adnexal mass: a systematic review and meta-analysis. Gynecol Oncol. 2012;126:157–66. doi: 10.1016/j.ygyno.2012.03.048.CrossRefPubMedGoogle Scholar
  8. 8.
    Kan CW, Hahn MA, Gard GB, Maidens J, Huh JY, Marsh DJ, et al. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer. 2012;12:627. doi: 10.1186/1471-2407-12-627.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309:310–1. doi: 10.1126/science.1114519.CrossRefPubMedGoogle Scholar
  11. 11.
    Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab. 2007;91:209–17. doi: 10.1016/j.ymgme.2007.03.011.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6. doi: 10.1126/science.1091903.CrossRefPubMedGoogle Scholar
  13. 13.
    Fabbri M. MicroRNAs and cancer: towards a personalized medicine. Curr Mol Med. 2013;13:751–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Tolle A, Jung M, Rabenhorst S, Kilic E, Jung K, Weikert S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol Rep. 2013;30:1949–56. doi: 10.3892/or.2013.2621.PubMedGoogle Scholar
  15. 15.
    Zhang W, Wang Q, Yu M, Wu N, Wang H. MicroRNA-145 function as a cell growth repressor by directly targeting c-Myc in human ovarian cancer. Technol Cancer Res Treat. 2014;13:161–8. doi: 10.7785/tcrt.2012.500367.PubMedGoogle Scholar
  16. 16.
    Zanutto S, Pizzamiglio S, Ghilotti M, Bertan C, Ravagnani F, Perrone F, et al. Circulating miR-378 in plasma: a reliable, haemolysis-independent biomarker for colorectal cancer. Br J Cancer. 2014;110:1001–7. doi: 10.1038/bjc.2013.819.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang ZQ, Meng H, Wang N, Liang LN, Liu LN, Lu SM, et al. Serum microRNA 143 and microRNA 215 as potential biomarkers for the diagnosis of chronic hepatitis and hepatocellular carcinoma. Diagn Pathol. 2014;9:135. doi: 10.1186/1746-1596-9-135.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. doi: 10.1038/cr.2008.282.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010;56:1871–9. doi: 10.1373/clinchem.2010.147553.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang C, Wang C, Chen X, Chen S, Zhang Y, Zhi F, et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. 2013;132:116–27. doi: 10.1002/ijc.27657.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 2011;47:784–91. doi: 10.1016/j.ejca.2010.10.025.CrossRefPubMedGoogle Scholar
  22. 22.
    Lakshmipathy U, Love B, Adams C, Thyagarajan B, Chesnut JD. Micro RNA profiling: an easy and rapid method to screen and characterize stem cell populations. Methods Mol Biol. 2007;407:97–114. doi: 10.1007/978-1-59745-536-7_8.CrossRefPubMedGoogle Scholar
  23. 23.
    Zaravinos A, Radojicic J, Lambrou GI, Volanis D, Delakas D, Stathopoulos EN, et al. Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. J Urol. 2012;188:615–23. doi: 10.1016/j.juro.2012.03.122.CrossRefPubMedGoogle Scholar
  24. 24.
    Sachdeva M, Mo YY. miR-145-mediated suppression of cell growth, invasion and metastasis. Am J Transl Res. 2010;2:170–80.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Luo X, Stock C, Burwinkel B, Brenner H. Identification and evaluation of plasma microRNAs for early detection of colorectal cancer. PLoS One. 2013;8:e62880. doi: 10.1371/journal.pone.0062880.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim SJ, Oh JS, Shin JY, Lee KD, Sung KW, Nam SJ, et al. Development of microRNA-145 for therapeutic application in breast cancer. J Control Release. 2011;155:427–34. doi: 10.1016/j.jconrel.2011.06.026.CrossRefPubMedGoogle Scholar
  27. 27.
    Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103:256–64. doi: 10.1038/sj.bjc.6605742.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gao P, Xing AY, Zhou GY, Zhang TG, Zhang JP, Gao C, et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene. 2013;32:491–501. doi: 10.1038/onc.2012.61.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu H, Xiao Z, Wang K, Liu W, Hao Q. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. Biochem Biophys Res Commun. 2013;441:693–700. doi: 10.1016/j.bbrc.2013.10.053.CrossRefPubMedGoogle Scholar
  30. 30.
    Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707. doi: 10.1158/0008-5472.CAN-07-1936.CrossRefPubMedGoogle Scholar
  31. 31.
    Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2012;40:761–74. doi: 10.1093/nar/gkr730.CrossRefPubMedGoogle Scholar
  32. 32.
    Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125:345–52. doi: 10.1002/ijc.24390.CrossRefPubMedGoogle Scholar
  33. 33.
    Shigehara K, Yokomuro S, Ishibashi O, Mizuguchi Y, Arima Y, Kawahigashi Y, et al. Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One. 2011;6:e23584. doi: 10.1371/journal.pone.0023584.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T, et al. MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer. 2012;130:611–21. doi: 10.1002/ijc.26064.CrossRefPubMedGoogle Scholar
  35. 35.
    Yun SJ, Jeong P, Kim WT, Kim TH, Lee YS, Song PH, et al. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int J Oncol. 2012;41:1871–8. doi: 10.3892/ijo.2012.1622.PubMedGoogle Scholar
  36. 36.
    Mar-Aguilar F, Mendoza-Ramirez JA, Malagon-Santiago I, Espino-Silva PK, Santuario-Facio SK, Ruiz-Flores P, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers. 2013;34:163–9. doi: 10.3233/dma-120957.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ng EK, Li R, Shin VY, Jin HC, Leung CP, Ma ES, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8:e53141. doi: 10.1371/journal.pone.0053141.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tang D, Shen Y, Wang M, Yang R, Wang Z, Sui A, et al. Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer. Eur J Cancer Prev. 2013;22:540–8. doi: 10.1097/CEJ.0b013e32835f3be9.CrossRefPubMedGoogle Scholar
  39. 39.
    Andersen M, Grauslund M, Ravn J, Sorensen JB, Andersen CB, Santoni-Rugiu E. Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma. J Mol Diagn. 2014;16:418–30. doi: 10.1016/j.jmoldx.2014.03.002.CrossRefPubMedGoogle Scholar
  40. 40.
    McDermott AM, Miller N, Wall D, Martyn LM, Ball G, Sweeney KJ, et al. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One. 2014;9:e87032. doi: 10.1371/journal.pone.0087032.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer. 2013;132:1602–12. doi: 10.1002/ijc.27799.CrossRefPubMedGoogle Scholar
  42. 42.
    Yuxia M, Zhennan T, Wei Z. Circulating miR-125b is a novel biomarker for screening non-small-cell lung cancer and predicts poor prognosis. J Cancer Res Clin Oncol. 2012;138:2045–50. doi: 10.1007/s00432-012-1285-0.CrossRefPubMedGoogle Scholar
  43. 43.
    Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–59. doi: 10.1093/jnci/djt101.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu GH, Zhou ZG, Chen R, Wang MJ, Zhou B, Li Y, et al. Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumour Biol. 2013;34:2175–81. doi: 10.1007/s13277-013-0753-8.CrossRefPubMedGoogle Scholar
  45. 45.
    Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14:2690–5. doi: 10.1158/1078-0432.CCR-07-1731.CrossRefPubMedGoogle Scholar
  46. 46.
    Chung YW, Bae HS, Song JY, Lee JK, Lee NW, Kim T, et al. Detection of microRNA as novel biomarkers of epithelial ovarian cancer from the serum of ovarian cancer patients. Int J Gynecol Cancer. 2013;23:673–9. doi: 10.1097/IGC.0b013e31828c166d.CrossRefPubMedGoogle Scholar
  47. 47.
    Miles GD, Seiler M, Rodriguez L, Rajagopal G, Bhanot G. Identifying microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes. 2012;5:164. doi: 10.1186/1756-0500-5-164.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Doberstein K, Steinmeyer N, Hartmetz AK, Eberhardt W, Mittelbronn M, Harter PN, et al. MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia. 2013;15:218–30.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    La Rocca G, Shi B, Audia A, Ferrari-Amorotti G, Mellert HS, Calabretta B, et al. Regulation of microRNA-145 by growth arrest and differentiation. Exp Cell Res. 2011;317:488–95. doi: 10.1016/j.yexcr.2010.11.010.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Huichao Liang
    • 1
    Email author
  • Zhipeng Jiang
    • 2
  • Guie Xie
    • 3
  • Yan Lu
    • 4
  1. 1.Department of Gynecology Oncology, Guangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
  2. 2.Gastrointestinal Surgery, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina
  3. 3.Institute of Perinatal Medicine, Guangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
  4. 4.Guangzhou Cord Blood Bank, Guangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina

Personalised recommendations