Tumor Biology

, Volume 36, Issue 4, pp 3093–3100 | Cite as

Upregulated expression of miR-106a by DNA hypomethylation plays an oncogenic role in hepatocellular carcinoma

  • Renshun Yuan
  • Qiaoming Zhi
  • Hong Zhao
  • Ye Han
  • Ling Gao
  • Bin Wang
  • Zhongyang Kou
  • Zhaoji Guo
  • Songbing He
  • Xiaofeng Xue
  • Hao Hu
Research Article


Aberrant microRNA (miRNA) expression has been widely recognized to play an extremely important role in several cancers, including hepatocellular carcinoma (HCC). According to the previous studies, abnormal miR-106a expression was closely related to various cancer occurrences. However, the miR-106a expression in HCC remains unclear. In our study, we firstly detected the miR-106a expression levels in 36 pairs of HCC tissues. The results showed that miR-106a expression in HCC tissues was apparently higher than the level in the adjacent tissues. Then, we used quantitative real-time PCR (qPCR) and BSP to analyze miR-106a expression and promoter methylation in HCC cell lines. There came to a conclusion that the methylation status of the miR-106a promoter region was inversely correlated with the expression of miR-106a. After prediction with online software, we further used dual-luciferase reporter gene assay to ensure that TP53INP1 and CDKN1A might be the direct targets of miR-106a. At last, we explored the functions of miR-106a in HCC cells in vitro. Our results manifested that high-miR-106a cell line had stronger invasiveness, faster cell cycle progression, and more resistance to apoptosis compared with the low-miR-106a cell line. Therefore, our study suggested that upregulated expression of miR-106a by its promoter hypomethylation might contribute to the progression of HCC, which might be considered as a potentially effective biomarker and therapeutic approach in the future.


miR-106a Hypomethylation Oncogene Hepatocellular carcinoma 



This study was supported by a grant from the National Youthful Science Foundation of China (Nos. 81302145 and 81302147) and the National Science Foundation of Jiangsu Province, China (Nos. BK20130268 and 20130270).

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917. doi: 10.1002/ijc.25516.CrossRefPubMedGoogle Scholar
  3. 3.
    Bruix J, Sherman M, American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2. doi: 10.1002/hep.24199.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27. doi: 10.1056/NEJMra1001683.CrossRefPubMedGoogle Scholar
  5. 5.
    El-Serag HB, Davila JA. Surveillance for hepatocellular carcinoma: in whom and how? Ther Adv Gastroenterol. 2011;4(1):5–10. doi: 10.1177/1756283X10385964.CrossRefGoogle Scholar
  6. 6.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55. doi: 10.1016/S0140-6736(11)61347-0.CrossRefPubMedGoogle Scholar
  7. 7.
    Nault JC, Zucman-Rossi J. Genetics of hepatobiliary carcinogenesis. Semin Liver Dis. 2011;31(2):173–87. doi: 10.1055/s-0031-1276646.CrossRefPubMedGoogle Scholar
  8. 8.
    Nishida N, Goel A. Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Curr Genomics. 2011;12(2):130–7. doi: 10.2174/138920211795564359.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013;73(2):473–7. doi: 10.1158/0008-5472.CAN-12-3731.CrossRefPubMedGoogle Scholar
  10. 10.
    Daniel FI, Cherubini K, Yurgel LS, de Figueiredo MA, Salum FG. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer. 2011;117(4):677–87. doi: 10.1002/cncr.25482.CrossRefPubMedGoogle Scholar
  11. 11.
    Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet. 2010;70:87–99. doi: 10.1016/B978-0-12-380866-0.60004-6.PubMedGoogle Scholar
  12. 12.
    Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278(10):1598–609. doi: 10.1111/j.1742-4658.2011.08089.x.CrossRefPubMedGoogle Scholar
  13. 13.
    Khare S, Zhang Q, Ibdah JA. Epigenetics of hepatocellular carcinoma: role of microRNA. World J Gastroenterol. 2013;19(33):5439–45. doi: 10.3748/wjg.v19.i33.5439.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  15. 15.
    Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE. 2007;2007(367):re1. doi: 10.1126/stke.3672007re1.
  16. 16.
    Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi: 10.1016/j.ydbio.2006.08.028.CrossRefPubMedGoogle Scholar
  17. 17.
    Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56. doi: 10.1016/B978-0-12-380866-0.60002-2.PubMedGoogle Scholar
  18. 18.
    Chen X, Zhang L, Zhang T, Hao M, Zhang X, Zhang J, et al. Methylation-mediated repression of microRNA 129-2 enhances oncogenic SOX4 expression in HCC. Liver Int. 2013;33(3):476–86. doi: 10.1111/liv.12097.CrossRefPubMedGoogle Scholar
  19. 19.
    Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K, et al. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol. 2013;42(2):411–8. doi: 10.3892/ijo.2012.1724.PubMedGoogle Scholar
  20. 20.
    Long XR, He Y, Huang C, Li J. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in hepatocellular carcinogenesis. Int J Oncol. 2014;44(6):1915–22. doi: 10.3892/ijo.2014.2373.PubMedGoogle Scholar
  21. 21.
    Xie K, Liu J, Chen J, Dong J, Ma H, Liu Y, et al. Methylation-associated silencing of microRNA-34b in hepatocellular carcinoma cancer. Gene. 2014;543(1):101–7. doi: 10.1016/j.gene.2014.03.059.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang PP, Wang XL, Zhao W, Qi B, Yang Q, Wan HY, et al. DNA methylation-mediated repression of miR-941 enhances lysine (K)-specific demethylase 6B expression in hepatoma cells. J Biol Chem. 2014;289(35):24724–35. doi: 10.1074/jbc.M114.567818.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang F, Xue X, Wei J, An Y, Yao J, Cai H, et al. hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer. 2010;103(4):567–74. doi: 10.1038/sj.bjc.6605724.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ma L, Liu J, Liu L, Duan G, Wang Q, Xu Y, et al. Overexpression of the transcription factor MEF2D in hepatocellular carcinoma sustains malignant character by suppressing G2-M transition genes. Cancer Res. 2014;74(5):1452–62. doi: 10.1158/0008-5472.CAN-13-2171.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhu M, Zhang N, He S, Lui Y, Lu G, Zhao L. MicroRNA-106a targets TIMP2 to regulate invasion and metastasis of gastric cancer. FEBS Lett. 2014;588(4):600–7. doi: 10.1016/j.febslet.2013.12.028.CrossRefPubMedGoogle Scholar
  26. 26.
    Li P, Xu Q, Zhang D, Li X, Han L, Lei J, et al. Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 2014;588(5):705–12. doi: 10.1016/j.febslet.2014.01.007.CrossRefPubMedGoogle Scholar
  27. 27.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Laranjeiro R, Tamai TK, Peyric E, Krusche P, Ott S, Whitmore D. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing. Proc Natl Acad Sci U S A. 2013;110(17):6835–40. doi: 10.1073/pnas.1217912110.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roskams T, Kojiro M. Pathology of early hepatocellular carcinoma: conventional and molecular diagnosis. Semin Liver Dis. 2010;30(1):17–25. doi: 10.1055/s-0030-1247129.CrossRefPubMedGoogle Scholar
  30. 30.
    Aravalli RN, Cressman EN, Steer CJ. Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Arch Toxicol. 2013;87(2):227–47. doi: 10.1007/s00204-012-0931-2.CrossRefPubMedGoogle Scholar
  31. 31.
    Rich N, Singal AG. Hepatocellular carcinoma tumour markers: current role and expectations. Best Pract Res Clin Gastroenterol. 2014;28(5):843–53. doi: 10.1016/j.bpg.2014.07.018.CrossRefPubMedGoogle Scholar
  32. 32.
    Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol. 2014;20(24):7894–913. doi: 10.3748/wjg.v20.i24.7894.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, et al. miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog. 2013;52(8):634–46. doi: 10.1002/mc.21899.CrossRefPubMedGoogle Scholar
  34. 34.
    Catela Ivkovic T, Aralica G, Cacev T, Loncar B, Kapitanovic S. miR-106a overexpression and pRB downregulation in sporadic colorectal cancer. Exp Mol Pathol. 2013;94(1):148–54. doi: 10.1016/j.yexmp.2012.11.002.CrossRefPubMedGoogle Scholar
  35. 35.
    Huh JH, Kim TH, Kim K, Song JA, Jung YJ, Jeong JY, et al. Dysregulation of miR-106a and miR-591 confers paclitaxel resistance to ovarian cancer. Br J Cancer. 2013;109(2):452–61. doi: 10.1038/bjc.2013.305.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dai DW, Lu Q, Wang LX, Zhao WY, Cao YQ, Li YN, et al. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM. BMC Cancer. 2013;13:478. doi: 10.1186/1471-2407-13-478.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, et al. An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell. 2011;147(6):1233–47. doi: 10.1016/j.cell.2011.10.043.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17. doi: 10.1016/j.cell.2009.04.021.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Renshun Yuan
    • 1
  • Qiaoming Zhi
    • 1
  • Hong Zhao
    • 1
  • Ye Han
    • 1
  • Ling Gao
    • 1
  • Bin Wang
    • 1
  • Zhongyang Kou
    • 1
  • Zhaoji Guo
    • 1
  • Songbing He
    • 1
  • Xiaofeng Xue
    • 1
  • Hao Hu
    • 1
  1. 1.Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina

Personalised recommendations