Tumor Biology

, Volume 36, Issue 4, pp 2725–2735 | Cite as

Staurosporine analogs promote distinct patterns of process outgrowth and polyploidy in small cell lung carcinoma cells

  • Hichem Gallala
  • Jochen Winter
  • Nadine Veit
  • Michael Nowak
  • Sven Perner
  • Cornelius Courts
  • Dominik Kraus
  • Viktor Janzen
  • Rainer Probstmeier
Research Article


We have recently shown that staurosporine mediates the conversion of small cell lung carcinoma (SCLC) cells into a neuron-like process-bearing phenotype. Here, we have extended these studies to the staurosporine analogs K252a, lestaurtinib, PKC412, stauprimide, and UCN-01 and analyzed their influence on process extension, cell cycle distribution, and induction of polyploidy in four SCLC cell lines. In GLC-2 cells, all compounds provoked extensive process formation with the exception of PKC412 that showed no response. In H1184 cells, process formation was predominantly induced by staurosporine and, to lesser extent, in lestaurtinib-, stauprimide-, and UCN-01-treated cells. In the presence of K252a or PKC412, cells became bipolar and spindle shaped or showed pronounced cell flattening. In GLC-36 and SCLC-24H cells, only cell flattening was detectable. Process formation was reversible upon drug removal as shown for GLC-2 and H1184 cells. Fluorescence-activated cell sorting (FACS) and fluorescence in situ hybridization (FISH) analysis indicated the induction of polyploidy in all staurosporine and in two out of four stauprimide-treated SCLC cell lines. For other staurosporine analogs, polyploidy was observed only in UCN-01-treated GLC-36 cells and in K252a-treated H1184 and GLC-36 cells. The presence of staurosporine or its analogs did not alter the constitutive activation pattern of the canonical Akt/PI3K or MEK/extracellular signal-regulated kinase (ERK)1/2 signaling pathways nor could we detect an influence of stauprimide application on the expression level of the c-Myc oncogene. These data demonstrate that in SCLC cells, albeit a higher substrate specificity, staurosporine analogs can induce staurosporine-comparable effects.


K252a Lestaurtinib PKC412 Small cell lung carcinoma Stauprimide Staurosporine UCN-01 


  1. 1.
    Riaz SP, Lüchtenborg M, Coupland VH, Spicer J, Peake MD, Moller H. Trends in incidence of small cell lung cancer and all lung cancer. Lung Cancer. 2012;75:280–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Murmann T, Carrillo-García C, Veit N, Courts C, Glassmann A, Janzen V, et al. Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype. PLoS One. 2014. doi: 10.1371/journal.pone.0086910.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Gani OA, Engh RA. Protein kinase inhibition of clinically important staurosporine analogues. Nat Prod Rep. 2010;27:489–98.CrossRefPubMedGoogle Scholar
  4. 4.
    Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Park BS, Abdel-Azeem AZ, Al-Sanea MM, Yoo KH, Tae JS, Lee SH. Staurosporine analogues from microbial and synthetic sources and their biological activities. Curr Med Chem. 2013;20:3872–902.CrossRefPubMedGoogle Scholar
  6. 6.
    Wu CF, Howard BD. K252a-potentiation of EGF-induced neurite outgrowth from PC12 cells is not mimicked or blocked by other protein kinase activators or inhibitors. Brain Res Dev Brain Res. 1995;86:217–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Thompson AF, Levin LA. Neuronal differentiation by analogs of staurosporine. Neurochem Int. 2010;56:554–60.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Diaz T, Navarro A, Ferrer G, Gel B, Gaya A, Artells R, et al. Lestaurtinib inhibition of the Jak/STAT signaling pathway in Hodgkin lymphoma inhibits proliferation and induces apoptosis. PLoS One. 2011;6:e18856.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Osborne JK, Larsen JE, Gonzales JX, Shames DS, Sato M, Wistuba II, et al. NeuroD1 regulation of migration accompanies the differential sensitivity of neuroendocrine carcinomas to TrkB inhibition. Oncogenesis. 2013. doi: 10.1038/oncsis.2013.24.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Shabbir M, Stuart R. Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Expert Opin Invest Drugs. 2010;19:427–36.CrossRefGoogle Scholar
  11. 11.
    Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, et al. PKC412—a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000;15:17–28.PubMedGoogle Scholar
  12. 12.
    Fathi AT, Chen YB. Treatment of FLT3-ITD acute myeloid leukemia. Am J Blood Res. 2011;1:175–89.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339–45.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell. 2009;4:416–26.CrossRefPubMedGoogle Scholar
  15. 15.
    Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem. 2000;275:5600–5.CrossRefPubMedGoogle Scholar
  16. 16.
    On KF, Chen Y, Ma HT, Chow JP, Poon RY. Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01. Mol Cancer Ther. 2011;10:784–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Fracasso PM, Williams KJ, Chen RC, Picus J, Ma CX, Ellis MJ, et al. A Phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemother Pharmacol. 2011;67:1225–37.CrossRefPubMedGoogle Scholar
  18. 18.
    Ma CX, Ellis MJ, Petroni GR, Guo Z, Cai SR, Ryan CE, et al. A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer. Breast Cancer Res Treat. 2013;137:483–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Scheble VJ, Braun M, Beroukhim R, Mermel CH, Ruiz C, Wilbertz T, et al. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod Pathol. 2010;23:1061–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kraus AC, Ferber I, Bachmann SO, Specht H, Wimmel A, Gross MW, et al. In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene. 2002;21:8683–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Toledo LM, Lydon NB. Structures of staurosporine bound to CDK2 and cAPK—new tools for structure-based design of protein kinase inhibitors. Structure. 1997;5:1551–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Bruno S, Ardelt B, Skierski JS, Traganos F, Darzynkiewicz Z. Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res. 1992;52:470–3.PubMedGoogle Scholar
  23. 23.
    Fujikawa-Yamamoto K, Wang S, Yamagishi H, Ohdoi C, Murano H, Ikeda T. Establishment of a tetraploid Meth-A cell line through polyploidization by demecolcine but not by staurosporine, K-252A and paclitaxel. Cell Prolif. 2001;34:211–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Quentmeier H, Zaborski M, Drexler HG. Effects of thrombopoietin, interleukin-3 and the kinase inhibitor K-252a on growth and polyploidization of the megakaryocytic cell line M-07e. Leukemia. 1998;12:1603–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Akiyama T, Shimizu M, Okabe M, Tamaoki T, Akinaga S. Differential effects of UCN-01, staurosporine and CGP 41 251 on cell cycle progression and CDC2/cyclin B1 regulation in A431 cells synchronized at M phase by nocodazole. Anticancer Drugs. 1999;10:67–78.CrossRefPubMedGoogle Scholar
  26. 26.
    Chitikova ZV, Gordeev SA, Bykova TV, Zubova SG, Pospelov VA, Pospelova TV. Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers. Cell Cycle. 2014;1:1424–39.CrossRefGoogle Scholar
  27. 27.
    Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int. 2008;3:1031–43.CrossRefGoogle Scholar
  28. 28.
    Erenpreisa J, Cragg MS. Three steps to the immortality of cancer cells: senescence, polyploidy and self-renewal. Cancer Cell Int. 2013. doi: 10.1186/1475-2867-13-92.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int. 2000;24:621–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Salmina K, Jankevics E, Huna A, Perminov D, Radovica I, Klymenko T, et al. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells. Exp Cell Res. 2010;316:2099–112.CrossRefPubMedGoogle Scholar
  31. 31.
    Kondo T. Stem cell-like cancer cells in cancer cell lines. Cancer Biomark. 2007;3:245–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Ke CC, Liu RS, Yang AH, Liu CS, Chi CW, Tseng LM, et al. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy. Eur J Nucl Med Mol Imaging. 2013;40:61–71.CrossRefPubMedGoogle Scholar
  33. 33.
    López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 2012. doi: 10.1186/1471-2407-12-48.Google Scholar
  34. 34.
    Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74:1554–65.CrossRefPubMedGoogle Scholar
  35. 35.
    Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, et al. The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One. 2013. doi: 10.1371/journal.pone.0076550.Google Scholar
  36. 36.
    Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Hichem Gallala
    • 1
  • Jochen Winter
    • 2
  • Nadine Veit
    • 3
  • Michael Nowak
    • 4
  • Sven Perner
    • 4
  • Cornelius Courts
    • 5
  • Dominik Kraus
    • 6
  • Viktor Janzen
    • 1
  • Rainer Probstmeier
    • 3
  1. 1.Department of Hematology/OncologyUniversity of BonnBonnGermany
  2. 2.Oral Cell Biology Group, Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
  3. 3.Neuro- and Tumor Cell Biology Group, Department of Nuclear MedicineUniversity of BonnBonnGermany
  4. 4.Department of Prostate Cancer Research, Institute of PathologyUniversity of BonnBonnGermany
  5. 5.Institute of Legal MedicineUniversity of BonnBonnGermany
  6. 6.Department of Prosthodontics, Preclinical Education, and Material ScienceUniversity of BonnBonnGermany

Personalised recommendations