Tumor Biology

, Volume 36, Issue 1, pp 81–94 | Cite as

Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells

  • Chenxiao Yu
  • Jiao Xue
  • Wei Zhu
  • Yang Jiao
  • Shuyu ZhangEmail author
  • Jianping CaoEmail author


Unlike normal differentiated cells, cancer cells primarily rely on glycolysis to generate energy needed for cellular processes even in normoxia conditions. This phenomenon is called aerobic glycolysis or “the Warburg effect.” Aerobic glycolysis is inefficient to generate ATP, but the advantages it confers to cancer cells remain to be fully explained. Several oncogenic signaling pathways, interplaying with enzymes and kinases involved in glucose metabolism, participate in the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Non-coding RNAs (ncRNAs) are a family of functional RNA molecules that are not further translated into proteins, which exert regulatatory roles in gene transcription and translation. ncRNAs, especially miRNAs and long non-coding RNAs (lncRNAs), may also have great effect on glucose metabolism by targeting not only glycolysis enzymes directly but also oncogenic signaling pathways indirectly. A better understanding of the Warburg effect and the regulatory role of ncRNAs in cancer glucose metabolism may contribute to the treatment of cancers.


Warburg effect Aerobic glycolysis Glucose metabolism Non-coding RNA (ncRNA) MicroRNA (miRNA) Long non-coding RNA (lncRNA) 



This work is supported by the National Natural Science Foundation of China (81472917, 81302382, and 81472920), the Key Programs of Natural Science Foundation of Jiangsu Educational Committee (11KJA310001), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedGoogle Scholar
  2. 2.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.PubMedGoogle Scholar
  4. 4.
    Szymanski M et al. Noncoding RNA transcripts. J Appl Genet. 2003;44(1):1–20.PubMedGoogle Scholar
  5. 5.
    Hüttenhofer A, Schattner P, Polacek N. Non-coding RNAs: hope or hype? Trends Genet. 2005;21(5):289–97.PubMedGoogle Scholar
  6. 6.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.PubMedGoogle Scholar
  7. 7.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedGoogle Scholar
  8. 8.
    Lee Y et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Han J et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.PubMedGoogle Scholar
  10. 10.
    Denli AM et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.PubMedGoogle Scholar
  11. 11.
    Yi R et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Vermeulen A et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11(5):674–82.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gregory RI et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.PubMedGoogle Scholar
  14. 14.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16.PubMedGoogle Scholar
  16. 16.
    Xu X et al. miRNA: the nemesis of gastric cancer (review). Oncol Lett. 2013;6(3):631–41.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMedGoogle Scholar
  18. 18.
    Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMedGoogle Scholar
  19. 19.
    Mercer TR et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2008;105(2):716–21.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Babak T, Blencowe BJ, Hughes TR. Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinforma. 2007;8(1):33.Google Scholar
  21. 21.
    Seto AG, Kingston RE, Lau NC. The coming of age for PIWI proteins. Mol Cell. 2007;26(5):603–9.PubMedGoogle Scholar
  22. 22.
    Gunawardane LS et al. A slicer-mediated mechanism for repeat-associated siRNA 5′end formation in Drosophila. Science. 2007;315(5818):1587–90.PubMedGoogle Scholar
  23. 23.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.PubMedGoogle Scholar
  24. 24.
    Lehninger N, Cox MN. Principles of biochemistry. New York: WH Freeman & Co.; 2008.Google Scholar
  25. 25.
    DeBerardinis RJ et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci. 2007;104(49):19345–50.PubMedPubMedCentralGoogle Scholar
  26. 26.
    DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148(6):1132–44.PubMedPubMedCentralGoogle Scholar
  27. 27.
    DeBerardinis RJ et al. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705–13.PubMedGoogle Scholar
  29. 29.
    Quagliaro L et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells the role of protein kinase C and NAD (P) H-oxidase activation. Diabetes. 2003;52(11):2795–804.PubMedGoogle Scholar
  30. 30.
    Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.PubMedGoogle Scholar
  31. 31.
    Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMedGoogle Scholar
  32. 32.
    Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.PubMedGoogle Scholar
  33. 33.
    Zhu H et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147(1):81–94.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kato M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci. 2007;104(9):3432–7.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang H et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.PubMedGoogle Scholar
  36. 36.
    Uesugi A et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71(17):5765–78.PubMedGoogle Scholar
  37. 37.
    Wang J et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog. 2013;9(10):e1003697.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Meng F et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Aguda BD et al. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci. 2008;105(50):19678–83.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Olive V et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 2009;23(24):2839–49.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Liang Z et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. 2011;28(12):3091–100.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kefas B et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–72.PubMedGoogle Scholar
  43. 43.
    Tsukamoto Y et al. MicroRNA-375 is down regulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3ζ. Cancer Res. 2010;70(6):2339–49.PubMedGoogle Scholar
  44. 44.
    Matoba S et al. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650–3.PubMedGoogle Scholar
  45. 45.
    Samuels-Lev Y et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8(4):781–94.PubMedGoogle Scholar
  46. 46.
    Li Q et al. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res. 2007;67(1):66–74.PubMedGoogle Scholar
  47. 47.
    Shikama N et al. A novel cofactor for p300 that regulates the p53 response. Mol Cell. 1999;4(3):365–76.PubMedGoogle Scholar
  48. 48.
    Kumar M et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30(7):843–53.PubMedGoogle Scholar
  49. 49.
    Ji P et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41.PubMedGoogle Scholar
  50. 50.
    Zhang X et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology. 2010;151(3):939–47.PubMedGoogle Scholar
  51. 51.
    Weger S, Hammer E, Heilbronn R. Topors, a p53 and topoisomerase I binding protein, interacts with the adeno-associated virus (AAV-2) Rep78/68 proteins and enhances AAV-2 gene expression. J Gen Virol. 2002;83(3):511–6.PubMedGoogle Scholar
  52. 52.
    Hu W et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell. 2010;38(5):689–99.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci. 2008;105(36):13421–6.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhong H et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60(6):1541–5.PubMedGoogle Scholar
  55. 55.
    Iyer NV et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12(2):149–62.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ryan HE, Lo J, Johnson RS. HIF‐1α is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17(11):3005–15.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Taguchi A et al. Identification of hypoxia-inducible factor-1α as a novel target for miR-17-92 microRNA cluster. Cancer Res. 2008;68(14):5540–5.PubMedGoogle Scholar
  58. 58.
    Burant CF, Bell GI. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Biochemistry. 1992;31(42):10414–20.PubMedGoogle Scholar
  59. 59.
    Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62.PubMedGoogle Scholar
  60. 60.
    Joost H-G et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282(4):E974–6.PubMedGoogle Scholar
  61. 61.
    Thorens H-G, Bernard J. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol. 2001;18(4):247–56.PubMedGoogle Scholar
  62. 62.
    Fabani MM, Gait MJ. miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA–peptide conjugates. RNA. 2008;14(2):336–46.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 2010;86(3):410–20.PubMedGoogle Scholar
  64. 64.
    Yamasaki T et al. Tumor‐suppressive microRNA‐1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 2013;104(11):1411–9.PubMedGoogle Scholar
  65. 65.
    Fang R et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem. 2012;287(27):23227–35.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gregersen LH et al. MicroRNA-143 down-regulates hexokinase 2 in colon cancer cells. BMC Cancer. 2012;12(1):232.PubMedGoogle Scholar
  67. 67.
    Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43(7):969–80.PubMedGoogle Scholar
  68. 68.
    Liu AM et al. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One. 2014;9(1):e86872.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Burchard J, et al. MicroRNA‐122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6(1).Google Scholar
  70. 70.
    Bruning U et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1α activity during prolonged hypoxia. Mol Cell Biol. 2011;31(19):4087–96.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Yang F, et al. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013.Google Scholar
  72. 72.
    Aschrafi A et al. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. 2008;28(47):12581–90.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Bhaskar PT, Hay N. The two TORCs and AKT. Dev Cell. 2007;12(4):487–502.PubMedGoogle Scholar
  74. 74.
    Robey RB, Hay N. Is Akt the “Warburg kinase”?—Akt-energy metabolism interactions and oncogenesis. In: Seminars in cancer biology. 2009. Elsevier.Google Scholar
  75. 75.
    Gottlob K et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15(11):1406–18.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nogueira V et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 2008;14(6):458–70.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Kohn AD et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996;271(49):31372–8.PubMedGoogle Scholar
  78. 78.
    Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267–77.PubMedGoogle Scholar
  79. 79.
    Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 2005;65(22):10545–54.PubMedGoogle Scholar
  80. 80.
    Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2008;15(3):521–9.PubMedGoogle Scholar
  81. 81.
    Robey RA, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25(34):4683–96.PubMedGoogle Scholar
  82. 82.
    Deprez J et al. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.PubMedGoogle Scholar
  83. 83.
    Skeen JE et al. Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell. 2006;10(4):269–80.PubMedGoogle Scholar
  84. 84.
    Gingras A-C et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 1998;12(4):502–13.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Hahn-Windgassen A et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280(37):32081–9.PubMedGoogle Scholar
  86. 86.
    Majumder PK et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.PubMedGoogle Scholar
  87. 87.
    Kato M et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Guo C et al. The noncoding RNA, miR‐126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3‐kinase signaling and is frequently lost in colon cancers. Genes Chromosom Cancer. 2008;47(11):939–46.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Wang F, et al. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919–27.Google Scholar
  90. 90.
    Wu W et al. Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS One. 2013;8(9):e73920.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Poliseno L et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Li D et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 2013;182(1):64–70.PubMedGoogle Scholar
  93. 93.
    Kahn BB et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.PubMedGoogle Scholar
  94. 94.
    Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.PubMedGoogle Scholar
  96. 96.
    Shaw RJ et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329–35.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Sakamoto K et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24(10):1810–20.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.PubMedGoogle Scholar
  99. 99.
    Godlewski J et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37(5):620–32.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Chen H et al. Micro-RNA-195 and-451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One. 2012;7(7):e41574.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Nandi S, Mishra P. miR-133a alleviates cardiac autophagy by targeting AMPK in Ins2+/−diabetic mice (868.3). FASEB J. 2014;28(1 Supplement):868.3.Google Scholar
  102. 102.
    Bensaad K, Vousden KH. p53: new roles in metabolism. Trends Cell Biol. 2007;17(6):286–91.PubMedGoogle Scholar
  103. 103.
    Kondoh H et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005;65(1):177–85.PubMedGoogle Scholar
  104. 104.
    Bensaad K et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–20.PubMedGoogle Scholar
  105. 105.
    Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–72.PubMedGoogle Scholar
  106. 106.
    Coutts AS, La Thangue NB. The p53 response: emerging levels of co-factor complexity. Biochem Biophys Res Commun. 2005;331(3):778–85.PubMedGoogle Scholar
  107. 107.
    Moumen A et al. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell. 2005;123(6):1065–78.PubMedGoogle Scholar
  108. 108.
    Le MT et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23(7):862–76.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53. Cell Cycle. 2009;8(5):712–5.PubMedGoogle Scholar
  110. 110.
    Tripathi V et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Zhang X et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Mahmoudi S et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell. 2009;33(4):462–71.PubMedGoogle Scholar
  113. 113.
    Kim H et al. The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells. Oncogene. 2001;20(37):5118–23.PubMedGoogle Scholar
  114. 114.
    Zhang A, Xu M, Mo Y-Y. Role of the lncRNA−p53 regulatory network in cancer. J Mol Cell Biol. 2014. p. mju013.Google Scholar
  115. 115.
    Huarte M et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Yoon J-H et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Hung T et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–9.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Liu Q et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41(9):4976–87.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Dugimont T, et al. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene. 1998;16(18).Google Scholar
  120. 120.
    Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMedGoogle Scholar
  121. 121.
    Kaelin Jr WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMedGoogle Scholar
  122. 122.
    Ivan M et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.PubMedGoogle Scholar
  123. 123.
    Jaakkola P et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.PubMedGoogle Scholar
  124. 124.
    Maxwell PH et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.PubMedGoogle Scholar
  125. 125.
    Fukuda R et al. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem. 2002;277(41):38205–11.PubMedGoogle Scholar
  126. 126.
    Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 2003;63(9):2330–4.PubMedGoogle Scholar
  127. 127.
    Kim J-W et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.PubMedGoogle Scholar
  128. 128.
    Song T et al. MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. Asian Pac J Cancer Prev. 2011;12(5):1307–11.PubMedGoogle Scholar
  129. 129.
    Rane S et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Chandra D, Singh KK. Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta (BBA) Bioenerg. 2011;1807(6):620–5.Google Scholar
  131. 131.
    Das S et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110(12):1596–603.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Bian Z et al. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20(9):1076–8.PubMedGoogle Scholar
  133. 133.
    Lakomy R et al. MiR‐195, miR‐196b, miR‐181c, miR‐21 expression levels and O‐6‐methylguanine‐DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011;102(12):2186–90.PubMedGoogle Scholar
  134. 134.
    Scapoli L et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol. 2009;23(4):1229–34.Google Scholar
  135. 135.
    Huang X et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Chan SY et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273–84.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Zhang X et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158(3):607–19.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Michelakis E, Webster L, Mackey J. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99(7):989–94.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Keller K, Strube M, Mueckler M. Functional expression of the human HepG2 and rat adipocyte glucose transporters in Xenopus oocytes. Comparison of kinetic parameters. J Biol Chem. 1989;264(32):18884–9.PubMedGoogle Scholar
  140. 140.
    Horie T et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. 2009;389(2):315–20.PubMedGoogle Scholar
  141. 141.
    Chen Y-H et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278–86.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Chow T-fF et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183(2):743–51.PubMedGoogle Scholar
  143. 143.
    Singh PK et al. Regulation of aerobic glycolysis by microRNAs in cancer. Mol Cell Pharmacol. 2011;3(3):125.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Peschiaroli A et al. miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene. 2013;32(6):797–802.PubMedGoogle Scholar
  145. 145.
    Park YY et al. Tat‐activating regulatory DNA‐binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology. 2013;58(1):182–91.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Kefas B et al. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 2010;12(11):1102–12.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Chen B et al. Roles of microRNA on cancer cell metabolism. J Transl Med. 2012;10:228.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Coulouarn C et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Calin GA et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci. 2008;105(13):5166–71.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Ding G et al. MiR-199a suppresses the hypoxia-induced proliferation of non-small cell lung cancer cells through targeting HIF1α. Mol Cell Biochem. 2013;384(1–2):173–80.PubMedGoogle Scholar
  151. 151.
    Papandreou I et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97.PubMedGoogle Scholar
  152. 152.
    Kim H-R et al. p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun. 2013;437(2):225–31.PubMedGoogle Scholar
  153. 153.
    Kaller M et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10(8):M111. 010462.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
  2. 2.Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X)Soochow UniversitySuzhouChina

Personalised recommendations