Tumor Biology

, Volume 36, Issue 3, pp 1983–1991 | Cite as

MicroRNA-224 and its target CAMKK2 synergistically influence tumor progression and patient prognosis in prostate cancer

  • Hao FU
  • Hui-chan He
  • Zhao-dong Han
  • Yue-ping Wan
  • Hong-wei Luo
  • Ya-qiang Huang
  • Chao Cai
  • Yu-xiang Liang
  • Qi-shan Dai
  • Fu-neng Jiang
  • Wei-de Zhong
Research Article

Abstract

We previously demonstrated that microRNA (miR)-224 expression was significantly reduced in human prostate cancer (PCa) tissues and predicted unfavorable prognosis in patients. However, the underlying mechanisms of miR-224 have not been fully elucidated. In this study, calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was identified as a target gene of miR-224. Then, we found that enforced expression of miR-224 could suppress PCa cell proliferation and cell cycle by regulating the expression of CAMKK2 in vitro. In addition, the expression levels of miR-224 in PCa tissues were negatively correlated with those of CAMKK2 mRNA significantly (Spearman’s correlation: r = −0.66, P = 0.004). Moreover, combined low miR-224 expression and high CAMKK2 expression (miR-224-low/CAMKK2-high) was closely correlated with advanced clinical stage (P = 0.028). Furthermore, PCa patients with miR-224-low/CAMKK2-high expression more frequently had shorter overall survival than those in groups with other expression patterns of two molecules. In conclusion, our data offer the convincing evidence that miR-224 and its target gene CAMKK2 may synergistically contribute to the malignant progression of PCa. Combined detection of miR-224 and CAMKK2 expressions represents an efficient predictor of patient prognosis and may be a novel marker which can provide additional prognostic information in PCa.

Keywords

Prostate cancer MicroRNA-224 Calcium/calmodulin-dependent protein kinase kinase 2 Clinicopathological characteristic Overall survival 

Supplementary material

13277_2014_2805_Fig5_ESM.gif (660 kb)
Supplement Fig. 1

Original data of transwell and wound-healing assay. Overexpression of miR-224 fail to promote invasion and migration in CAMKK2 knockdown DU145 cells. (GIF 660 kb)

13277_2014_2805_MOESM1_ESM.tif (12.7 mb)
High resolution (TIFF 13041 kb)

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Molitierno J, Evans A, Mohler JL, Wallen E, Moore D, Pruthi RS. Characterization of biochemical recurrence after radical prostatectomy. Urol Int. 2006;77:130–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Klotz L. Hormone therapy for patients with prostate carcinoma. Cancer. 2000;88:3009–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Eisenberger MA, Blumenstein BA, Crawford ED. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med. 1998;339:1036–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Chou J, Shahi P, Werb Z. MicroRNA-mediated regulation of the tumor microenvironment. Cell Cycle. 2013;12:3262–71.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004;101:11755–60.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67:6130–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27:5848–56.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    He HC, Han ZD, Dai QS, Ling XH, Fu X, Lin ZY, et al. Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients. BMC Genomics. 2013;14:757.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin ZY, Huang YQ, Zhang YQ, Han ZD, He HC, Ling XH, et al. MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1. Int J Cancer. 2014;135:541–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dweep H, Sticht C, Pandey P, Gretz N. miRWalk--database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Betel D, Koppal A, Agius P, Sander C, Leslie C. mirSVR predicted target site scoring method: comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:R90.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cary RL, Waddell S, Racioppi L, Long F, Novack DV, Voor MJ, et al. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation. J Bone Miner Res. 2013;28:1599–610.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers hrough Tau phosphorylation. Neuron. 2013;78:94–108.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Racioppi L, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem. 2012;287:31658–65.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Racioppi L, Noeldner PK, Lin F, Arvai S, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J Biol Chem. 2012;287:11579–91.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Racioppi L. CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med. 2013;19:83–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Itkonen HM, Mills IG. N-linked glycosylation supports cross-talk between receptor tyrosine kinases and androgen receptor. PLoS One. 2013;8:e65016.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Frigo DE, Howe MK, Wittmann BM, Brunner AM, Cushman I, Wang Q, et al. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res. 2011;71:528–37.CrossRefPubMedGoogle Scholar
  24. 24.
    Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–33.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Karacosta LG, Foster BA, Azabdaftari G, Feliciano DM, Edelman AM. A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression. J Biol Chem. 2012;287:24832–43.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shima T, Mizokami A, Miyagi T, Kawai K, Izumi K, Kumaki M, et al. Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer. Prostate. 2012;72:1789–801.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Hao FU
    • 1
    • 2
  • Hui-chan He
    • 4
  • Zhao-dong Han
    • 4
  • Yue-ping Wan
    • 3
  • Hong-wei Luo
    • 1
  • Ya-qiang Huang
    • 1
  • Chao Cai
    • 1
  • Yu-xiang Liang
    • 4
  • Qi-shan Dai
    • 4
  • Fu-neng Jiang
    • 4
  • Wei-de Zhong
    • 1
    • 3
    • 4
    • 5
  1. 1.Guangdong Provincial Institute of NephrologySouthern Medical UniversityGuangzhouChina
  2. 2.Department of Urology, Affiliated Nanhua HospitalUniversity of South ChinaHengyangChina
  3. 3.Department of Urology, Huadu District People’s HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  4. 4.Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s HospitalGuangzhou Medical UniversityGuangzhouChina
  5. 5.Department of Urology, Guangzhou First People’s HospitalGuangzhou Medical UniversityGuangzhouChina

Personalised recommendations