Advertisement

Tumor Biology

, Volume 35, Issue 9, pp 8483–8523 | Cite as

Metastasis review: from bench to bedside

  • Ali Mohammad Alizadeh
  • Sadaf Shiri
  • Sadaf Farsinejad
Review

Abstract

Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.

Keywords

Metastasis Review Dissociation Invasion Intravasation Extravasation 

Abbreviations

GFs

Growth factors

MMPs

Matrix metalloproteinases

CTCs

Circulating tumor cells

ECM

Extracellular matrix

ROS

Reactive oxygen species

FAs

Focal adhesions

FAK

Focal adhesion kinase

MAPK

Mitogen-activated protein kinase

uPAR

Uroplasminogen activator receptor

PIP3

Phosphatidylinositol 3

PI3K

Phosphatidylinositol 3 kinase

Src

Pronounced “sarc” as it is short for “sarcoma”

ILK

Integrin-linked kinase

PKB (known as Akt)

Protein kinase B

GSK3β

Glycogen synthase kinase 3 beta

EGF

Epidermal growth factor

TNF-α

Tumor necrosis factor alpha

IL

Interleukin

IgSF

Immunoglobulin superfamily

CAMs

Cell adhesion molecules

MCAM

Melanoma CAM

L1CAM

L1 protein family CAM

NCAM

Neural CAM

PECAM

Platelet endothelial CAM

ALCAM

Aplysia CAM

ICAM-1

Intercellular CAM-1

VCAM-1

Vascular cell CAM-1

HA

Hyaluronan

VEGFR-2

Vascular endothelial growth factor-2

MT-MMPs

Membrane-type MMPs

TIMPs

Tissue inhibitors of metalloproteases

bFGF

Basic fibroblast growth factor

Pro-TGFα

Protransforming growth factor alpha

PAR

Protease-activated receptor

Fas-L

Fas-ligand

FADD

Fas-associated protein with death domain

TSP

Thrombospondin

LRP

Lipoprotein receptor-related protein

ERKs

Extracellular signal-regulated kinases

CXCL5

Chemokine C-X-C motif ligand-5

MCP-3

Monocyte chemoattractant protein-3

SDF-1

Stromal cell-derived factor-1

ADAM-10

A disintegrin and metalloproteinase domain-containing protein 10

IGFs

Insulin-like growth factors

IGFBP

IGF binding protein

CECs

Capillary endothelial cells

NF-κB

Nuclear factor-κb

cis-ACCP

cis-2-Aminocyclohexylcarbamoyl phosphonic acid

SPs

Serine proteases

PAI-1

Plasminogen activator inhibitor-1

Serpin

Serine proteinase inhibitors

HGF

Hepatocyte growth factor

STAT3

Signal transducer and activator of transcription 3

Cath-D

Cathepsin D

MHC

Major histocompatibility complex

CAFs

Cancer-associated fibroblasts

TAMs

Tumor-associated macrophages

PLC

Phosphoinositide-specific phospholipase C

CAT

Collective to amoeboid transition

EMT

Epithelial to mesenchymal transition

MAT

Mesenchymal to amoeboid transition

CSF1

Colony-stimulating factor-1

TrkB

Also known as TrkB tyrosine kinase or BDNF/NT-3 growth factors receptor or neurotrophic tyrosine kinase receptor type 2

Ras

An abbreviation of “rat sarcoma”

TF

Tissue factor

EphA5

Eph receptor A5

Notes

Acknowledgments

This study was supported by Tehran University of Medical Sciences.

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content of the paper.

References

  1. 1.
    Jemal A et al. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69–90.Google Scholar
  2. 2.
    Jonsson B, Wilking N. A global comparison regarding patient access to cancer drugs. Ann Oncol. 2007;18:1–78.Google Scholar
  3. 3.
    Miovic M, Block S. Psychiatric disorders in advanced cancer. Cancer. 2007;110(8):1665–76.PubMedGoogle Scholar
  4. 4.
    Khan N, Mukhtar H. Cancer and metastasis: prevention and treatment by green tea. Cancer Metastasis Rev. 2010;29(3):435–45.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Weigelt B, Peterse JL, Van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602.PubMedGoogle Scholar
  6. 6.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.PubMedGoogle Scholar
  7. 7.
    Ferlay J et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.PubMedGoogle Scholar
  8. 8.
    Liotta LA, Kohn EC. Cancer’s deadly signature. Nat Genet. 2003;33(1):10–1.PubMedGoogle Scholar
  9. 9.
    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.PubMedGoogle Scholar
  10. 10.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.PubMedGoogle Scholar
  11. 11.
    Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.PubMedGoogle Scholar
  12. 12.
    Chung LW et al. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol. 2005;173(1):10–20.PubMedGoogle Scholar
  13. 13.
    Wang J, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87.PubMedGoogle Scholar
  14. 14.
    Weinberg RA. Is metastasis predetermined? Mol Oncol. 2007;1(3):263–4.PubMedGoogle Scholar
  15. 15.
    Hyoudou K et al. Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase quantitative analysis with firefly luciferase-expressing melanoma cells. Clin Cancer Res. 2004;10(22):7685–91.PubMedGoogle Scholar
  16. 16.
    Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–7.PubMedGoogle Scholar
  17. 17.
    Leong SP et al. Clinical patterns of metastasis. Cancer Metastasis Rev. 2006;25(2):221–32.PubMedGoogle Scholar
  18. 18.
    Tuttle TM. Technical advances in sentinel lymph node biopsy for breast cancer. Am Surg. 2004;70(5):407–13.PubMedGoogle Scholar
  19. 19.
    Pepper MS et al. Lymphangiogenesis and tumor metastasis. Cell Tissue Res. 2003;314(1):167–77.PubMedGoogle Scholar
  20. 20.
    Bacac M, Stamenkovic I. Metastatic cancer cell. Annu Rev Pathmechdis Mech Dis. 2008;3:221–47.Google Scholar
  21. 21.
    Brooks SA et al. Molecular interactions in cancer cell metastasis. Acta Histochemica. 2010;112(1):3–25.PubMedGoogle Scholar
  22. 22.
    Spano D, et al. Molecular networks that regulate cancer metastasis. in Seminars in cancer biology. 2012. Elsevier.Google Scholar
  23. 23.
    Feller L, Kramer B, Lemmer J. Pathobiology of cancer metastasis: a short account. Cancer Cell Int. 2012;12(1):24–24.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.PubMedGoogle Scholar
  25. 25.
    Meighan CM, Schwarzbauer JE. Temporal and spatial regulation of integrins during development. Curr Opin Cell Biol. 2008;20(5):520–4.PubMedCentralPubMedGoogle Scholar
  26. 26.
    van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res/Rev Mutat Res. 2011;728(1):23–34.Google Scholar
  27. 27.
    Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4(2):118–32.PubMedGoogle Scholar
  28. 28.
    Engers R, Gabbert HE. Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol. 2000;126(12):682–92.PubMedGoogle Scholar
  29. 29.
    Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer. 2010;126(3):589–98.PubMedGoogle Scholar
  30. 30.
    Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81.PubMedGoogle Scholar
  31. 31.
    Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2(2):91–100.PubMedGoogle Scholar
  32. 32.
    Angst BD, Marcozzi C, Magee AI. The cadherin superfamily: diversity in form and function. J Cell Sci. 2001;114(4):629–41.PubMedGoogle Scholar
  33. 33.
    Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6(8):622–34.PubMedGoogle Scholar
  34. 34.
    Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251(5000):1451–5.PubMedGoogle Scholar
  35. 35.
    Kashima T et al. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer. 2003;104(2):147–54.PubMedGoogle Scholar
  36. 36.
    Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harbor Perspect Biol. 2009;1(3):a003053.Google Scholar
  37. 37.
    Mohamet L.Hawkins K. and Ward C.M. Loss of function of e-cadherin in embryonic stem cells and the relevance to models of tumorigenesis. Journal of oncology, 2010. 2011.Google Scholar
  38. 38.
    Li L, Bennett S, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr. 2012;6(1):59–70.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Beavon I. The E-cadherin–catenin complex in tumour metastasis: structure, function and regulation. Eur J Cancer. 2000;36(13):1607–20.PubMedGoogle Scholar
  40. 40.
    Leber MF, Efferth T. Molecular principles of cancer invasion and metastasis (review). Int J Oncol. 2009;34(4):881–95.PubMedGoogle Scholar
  41. 41.
    Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol. 1995;7(5):619–27.PubMedGoogle Scholar
  42. 42.
    Provost E, Rimm DL. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr Opin Cell Biol. 1999;11(5):567–72.PubMedGoogle Scholar
  43. 43.
    Nagafuchi A. Molecular architecture of adherens junctions. Curr Opin Cell Biol. 2001;13(5):600–3.PubMedGoogle Scholar
  44. 44.
    Ozawa M, Ringwald M, Kemler R. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A. 1990;87(11):4246–50.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Hazan RB et al. Cadherin switch in tumor progression. Ann N Y Acad Sci. 2004;1014(1):155–63.PubMedGoogle Scholar
  46. 46.
    Ireton RC et al. A novel role for p120 catenin in E-cadherin function. J Cell Biol. 2002;159(3):465–76.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Niessen CM, Leckband D. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev. 2011;91(2):691–731.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84(3):345–57.PubMedGoogle Scholar
  49. 49.
    Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosom Cancer. 2002;34(3):255–68.PubMedGoogle Scholar
  50. 50.
    Volk T, Geiger B. A 135-kd membrane protein of intercellular adherens junctions. EMBO J. 1984;3(10):2249.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Zhao D et al. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS One. 2009;4(7):e6468.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61(9):3819–25.PubMedGoogle Scholar
  53. 53.
    Ramis-Conde I et al. Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol. 2009;6(1):016008.PubMedGoogle Scholar
  54. 54.
    Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988;102(4):639–55.PubMedGoogle Scholar
  55. 55.
    Hazan RB et al. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148(4):779–90.PubMedCentralPubMedGoogle Scholar
  56. 56.
    De Wever O et al. Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J Cell Sci. 2004;117(20):4691–703.PubMedGoogle Scholar
  57. 57.
    Islam S et al. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J Cell Biol. 1996;135(6):1643–54.PubMedGoogle Scholar
  58. 58.
    Tomita K et al. Cadherin switching in human prostate cancer progression. Cancer Res. 2000;60(13):3650–4.PubMedGoogle Scholar
  59. 59.
    Hsu M et al. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci. 2000;113(Pt 9):1535–42.PubMedGoogle Scholar
  60. 60.
    Shintani Y et al. Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol. 2008;180(6):1277–89.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Augustine CK et al. Targeting N-cadherin enhances antitumor activity of cytotoxic therapies in melanoma treatment. Cancer Res. 2008;68(10):3777–84.PubMedGoogle Scholar
  62. 62.
    Beasley GM et al. A phase 1 study of systemic ADH-1 in combination with melphalan via isolated limb infusion in patients with locally advanced in-transit malignant melanoma. Cancer. 2009;115(20):4766–74.PubMedGoogle Scholar
  63. 63.
    Tanaka H et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010;16(12):1414–20.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Gumbiner BM. Regulation of cadherin adhesive activity. J Cell Biol. 2000;148(3):399–404.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Pećina-Šlaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int. 2003;3(1):17.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Shi Q et al. Allosteric cross talk between cadherin extracellular domains. Biophys J. 2010;99(1):95–104.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Pinho SS et al. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci. 2011;68(6):1011–20.PubMedGoogle Scholar
  68. 68.
    Van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–88.PubMedGoogle Scholar
  69. 69.
    Jiang W. E‐cadherin and its associated protein catenins, cancer invasion and metastasis. Br J Surg. 1996;83(4):437–46.PubMedGoogle Scholar
  70. 70.
    Larue L et al. A role for cadherins in tissue formation. Development. 1996;122(10):3185–94.PubMedGoogle Scholar
  71. 71.
    Luo J, Lubaroff DM, Hendrix MJ. Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res. 1999;59(15):3552–6.PubMedGoogle Scholar
  72. 72.
    Hsu M-Y et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol. 2000;156(5):1515–25.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene. 2003;22(42):6524–36.PubMedGoogle Scholar
  74. 74.
    Vleminckx K et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66(1):107–19.PubMedGoogle Scholar
  75. 75.
    Riethmacher D, Brinkmann V, Birchmeier C. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A. 1995;92(3):855–9.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Hermiston ML, Wong MH, Gordon JI. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev. 1996;10(8):985–96.PubMedGoogle Scholar
  77. 77.
    Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009;28(1–2):151–66.PubMedGoogle Scholar
  78. 78.
    Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis 1. Endocr Rev. 2000;21(2):115–37.PubMedGoogle Scholar
  79. 79.
    Bennett J, Moffatt S, Horton M. Cell adhesion molecules in human osteoblasts: structure and function. 2001.Google Scholar
  80. 80.
    Ferrari SL et al. A role for N‐cadherin in the development of the differentiated osteoblastic phenotype. J Bone Miner Res. 2000;15(2):198–208.PubMedGoogle Scholar
  81. 81.
    Hippo Y et al. Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 2001;61(3):889–95.PubMedGoogle Scholar
  82. 82.
    Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 2010;29(1):223–37.PubMedGoogle Scholar
  83. 83.
    Gahmberg CG et al. Regulation of integrin activity and signalling. Biochim Biophys Acta (BBA)-Gen Subj. 2009;1790(6):431–44.Google Scholar
  84. 84.
    Plow EF et al. Ligand binding to integrins. J Biol Chem. 2000;275(29):21785–8.PubMedGoogle Scholar
  85. 85.
    Takagi J et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110(5):599–611.PubMedGoogle Scholar
  86. 86.
    Luo B-H, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Sastry SK, Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res. 2000;261(1):25–36.PubMedGoogle Scholar
  88. 88.
    Berman A, Kozlova N, Morozevich G. Integrins: structure and signaling. Biochemistry (Moscow). 2003;68(12):1284–99.Google Scholar
  89. 89.
    Mierke CT et al. Contractile forces in tumor cell migration. Eur J Cell Biol. 2008;87(8):669–76.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.PubMedGoogle Scholar
  91. 91.
    Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer. 2004;90(3):561–5.PubMedCentralPubMedGoogle Scholar
  92. 92.
    White DE, Muller WJ. Multifaceted roles of integrins in breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):135–42.PubMedGoogle Scholar
  93. 93.
    Janik ME, Lityńska A, Vereecken P. Cell migration—the role of integrin glycosylation. Biochim Biophys Acta (BBA)-Gen Subj. 2010;1800(6):545–55.Google Scholar
  94. 94.
    Chung J, Kim TH. Integrin‐dependent translational control: implication in cancer progression. Microsc Res Tech. 2008;71(5):380–6.PubMedGoogle Scholar
  95. 95.
    Schlaepfer DD, Jones K, Hunter T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol. 1998;18(5):2571–85.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Liapis H, Flath A, Kitazawa S. Integrin [alpha] v [beta] 3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol. 1996;5(2):127–35.PubMedGoogle Scholar
  97. 97.
    Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008;8(5):377–86.PubMedGoogle Scholar
  98. 98.
    Aumailley M et al. Altered synthesis of laminin 1 and absence of basement membrane component deposition in (beta) 1 integrin-deficient embryoid bodies. J Cell Sci. 2000;113(2):259–68.PubMedGoogle Scholar
  99. 99.
    Brooks PC et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell. 1996;85(5):683–93.PubMedGoogle Scholar
  100. 100.
    Deryugina EI et al. Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci. 1997;110(19):2473–82.PubMedGoogle Scholar
  101. 101.
    He Y et al. Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis. Clin Cancer Res. 2007;13(11):3115–24.PubMedGoogle Scholar
  102. 102.
    Desgrosellier JS et al. An integrin αvβ3–c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med. 2009;15(10):1163–9.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Wang Y et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. J Drug Targeting. 2009;17(6):459–67.Google Scholar
  104. 104.
    Meyer T, Marshall J, Hart I. Expression of alphav integrins and vitronectin receptor identity in breast cancer cells. Br J Cancer. 1998;77(4):530.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Rolli M et al. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(16):9482–7.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Nieswandt B et al. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295–300.PubMedGoogle Scholar
  107. 107.
    Tang BL, Ng EL. Rabs and cancer cell motility. Cell Motil Cytoskeleton. 2009;66(7):365–70.PubMedGoogle Scholar
  108. 108.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–33.PubMedGoogle Scholar
  109. 109.
    Morozevich GE et al. Implication of alpha5beta1 integrin in invasion of drug-resistant MCF-7/ADR breast carcinoma cells: a role for MMP-2 collagenase. Biochemistry (Mosc). 2008;73(7):791–6.Google Scholar
  110. 110.
    Humphries MJ, Olden K, Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science. 1986;233(4762):467–70.PubMedGoogle Scholar
  111. 111.
    Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007;1775(1):163–80.PubMedGoogle Scholar
  112. 112.
    Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discovery. 2010;9(10):804–20.PubMedGoogle Scholar
  113. 113.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Mullamitha SA et al. Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin Cancer Res. 2007;13(7):2128–35.PubMedGoogle Scholar
  115. 115.
    Nabors LB et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol. 2007;25(13):1651–7.PubMedGoogle Scholar
  116. 116.
    Reardon DA et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol. 2008;26(34):5610–7.PubMedGoogle Scholar
  117. 117.
    MacDonald TJ et al. Phase I clinical trial of cilengitide in children with refractory brain tumors: Pediatric Brain Tumor Consortium Study PBTC-012. J Clin Oncol. 2008;26(6):919–24.PubMedGoogle Scholar
  118. 118.
    Ricart AD et al. Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res. 2008;14(23):7924–9.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Danen EH et al. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin alpha 5 beta 1. J Biol Chem. 1995;270(37):21612–8.PubMedGoogle Scholar
  120. 120.
    Khalili P et al. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther. 2006;5(9):2271–80.PubMedGoogle Scholar
  121. 121.
    Cianfrocca ME et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br J Cancer. 2006;94(11):1621–6.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Mulgrew K et al. Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody. Abegrin Mol Cancer Ther. 2006;5(12):3122–9.PubMedGoogle Scholar
  123. 123.
    Gutheil JC et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res. 2000;6(8):3056–61.PubMedGoogle Scholar
  124. 124.
    McNeel DG et al. Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res. 2005;11(21):7851–60.PubMedGoogle Scholar
  125. 125.
    Hersey P et al. Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol Immunother. 2005;54(3):208–18.PubMedGoogle Scholar
  126. 126.
    Trikha M et al. CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer. 2004;110(3):326–35.PubMedGoogle Scholar
  127. 127.
    Chen Q et al. CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis. 2008;25(2):139–48.PubMedGoogle Scholar
  128. 128.
    Martin PL et al. Reviews preclinical safety and immune-modulating effects of therapeutic monoclonal antibodies to interleukin-6 and tumor necrosis factor-alpha in cynomolgus macaques. J Immunotoxicol. 2005;1(3):131–9.PubMedGoogle Scholar
  129. 129.
    Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–8.PubMedGoogle Scholar
  130. 130.
    McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14(5):581–6.PubMedGoogle Scholar
  131. 131.
    Läubli H. and Borsig.L., Selectins promote tumor metastasis. in Seminars in cancer biology. 2010. Elsevier.Google Scholar
  132. 132.
    Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259–87.PubMedGoogle Scholar
  133. 133.
    Rosen SD. Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol. 2004;22:129–56.PubMedGoogle Scholar
  134. 134.
    Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol. 2003;15(5):531–8.PubMedGoogle Scholar
  135. 135.
    Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012:1–10.Google Scholar
  136. 136.
    Sperandio M. Selectins and glycosyltransferases in leukocyte rolling in vivo. Febs J. 2006;273(19):4377–89.PubMedGoogle Scholar
  137. 137.
    Köhler S et al. E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br J Cancer. 2009;102(3):602–9.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Ley K et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.PubMedGoogle Scholar
  139. 139.
    Sallusto F et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708–12.PubMedGoogle Scholar
  140. 140.
    Sipkins DA et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–73.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Mannori G et al. Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Res. 1995;55(19):4425–31.PubMedGoogle Scholar
  142. 142.
    Witz IP. The selectin–selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008;27(1):19–30.PubMedGoogle Scholar
  143. 143.
    Läubli H, Spanaus K-S, Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583–91.PubMedGoogle Scholar
  144. 144.
    Barthel SR et al. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets. 2007;11(11):1473–91.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Preusser M et al. Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathologica. 2012;123(2):205–22.PubMedGoogle Scholar
  146. 146.
    Crockett-Torabi E. Selectins and mechanisms of signal transduction. J Leukocyte Biol. 1998;63(1):1–14.PubMedGoogle Scholar
  147. 147.
    Burdick MM et al. HCELL is the major E- and L-selectin ligand expressed on LS174T colon carcinoma cells. J Biol Chem. 2006;281(20):13899–905.PubMedGoogle Scholar
  148. 148.
    Gout S et al. Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res. 2006;66(18):9117–24.PubMedGoogle Scholar
  149. 149.
    Aychek T et al. E‐selectin regulates gene expression in metastatic colorectal carcinoma cells and enhances HMGB1 release. Int J Cancer. 2008;123(8):1741–50.PubMedGoogle Scholar
  150. 150.
    Ludwig RJ et al. Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res. 2004;64(8):2743–50.PubMedGoogle Scholar
  151. 151.
    Borsig L et al. Sulfated hexasaccharides attenuate metastasis by inhibition of P-selectin and heparanase. Neoplasia. 2011;13(5):445–52.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Soroka, V., Kasper C., and Poulsen F.M. Structural biology of NCAM, in structure and function of the neural cell adhesion molecule NCAM. 2010, Springer. p. 3-22.Google Scholar
  153. 153.
    Wai Wong C, Dye DE, Coombe DR. The role of immunoglobulin superfamily cell dhesion molecules in cancer metastasis. Int J Cell Biol. 2012;2012:340296.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Barclay A.N. Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. in Seminars in immunology. 2003. Elsevier.Google Scholar
  155. 155.
    Maddaluno L et al. The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med. 2009;206(3):623–35.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Garrido-Urbani S et al. Vascular and epithelial junctions: a barrier for leucocyte migration. Biochem Soc Trans. 2008;36(2):203–12.PubMedGoogle Scholar
  157. 157.
    Francavilla C., Maddaluno L., and Cavallaro U. The functional role of cell adhesion molecules in tumor angiogenesis. in Seminars in cancer biology. 2009. Elsevier.Google Scholar
  158. 158.
    Johnson JP et al. Melanoma progression-associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int J Cancer. 1997;73(5):769–74.PubMedGoogle Scholar
  159. 159.
    Wu G-J et al. Enforced expression of METCAM/MUC18 increases tumorigenesis of human prostate cancer LNCaP cells in nude mice. J Urol. 2011;185(4):1504–12.PubMedGoogle Scholar
  160. 160.
    Zeng G-F, Cai S-X, Wu G-J. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells. BMC Cancer. 2011;11(1):113.PubMedCentralPubMedGoogle Scholar
  161. 161.
    Roland CL et al. ICAM-1 expression determines malignant potential of cancer. Surgery. 2007;141(6):705–7.PubMedGoogle Scholar
  162. 162.
    Siesser PF, Maness PF. L1 cell adhesion molecules as regulators of tumor cell invasiveness. Cell Adh Migr. 2009;3(3):275–7.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Jezierska A, Matysiak W, Motyl T. ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy. Med Sci Monit Basic Res. 2006;12(8):BR263–73.Google Scholar
  164. 164.
    Deng C et al. Angiogenic effect of intercellular adhesion molecule-1. J Huazhong Univ Sci Technol. 2007;27:9–12.Google Scholar
  165. 165.
    Kevil CG et al. Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J Biol Chem. 2004;279(18):19230–8.PubMedGoogle Scholar
  166. 166.
    Gratzinger D, Barreuther M, Madri JA. Platelet–endothelial cell adhesion molecule-1 modulates endothelial migration through its immunoreceptor tyrosine-based inhibitory motif. Biochem Biophys Res Commun. 2003;301(1):243–9.PubMedGoogle Scholar
  167. 167.
    Park S et al. PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am J Physiol-Cell Physiol. 2010;299(6):C1468–84.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Gavert N et al. L1-CAM in cancerous tissues. Expert Opin Biol Ther. 2008;8(11):1749–57.PubMedGoogle Scholar
  169. 169.
    Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009;10(7):445–57.PubMedGoogle Scholar
  170. 170.
    Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 2010;46(7):1271–7.PubMedGoogle Scholar
  171. 171.
    Fox SB et al. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res. 1994;54(16):4539–46.PubMedGoogle Scholar
  172. 172.
    Richter U et al. The interaction between CD44 on tumour cells and hyaluronan under physiologic flow conditions: implications for metastasis formation. Histochem Cell Biol. 2012;137(5):687–95.PubMedGoogle Scholar
  173. 173.
    UNDERHILL C. CD44: the hyaluronan receptor. J Cell Sci. 1992;103(2):293–8.PubMedGoogle Scholar
  174. 174.
    Lesley J, Hyman R, Kincade PW. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335.PubMedGoogle Scholar
  175. 175.
    Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45.PubMedGoogle Scholar
  176. 176.
    Ishii S et al. CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surg Oncol. 1993;2(4):255–64.PubMedGoogle Scholar
  177. 177.
    Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol. 1992;116(3):817–25.PubMedGoogle Scholar
  178. 178.
    Marhaba R, Zöller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35(3):211–31.PubMedGoogle Scholar
  179. 179.
    Legg JW et al. A novel PKC-regulated mechanism controls CD44–ezrin association and directional cell motility. Nat Cell Biol. 2002;4(6):399–407.PubMedGoogle Scholar
  180. 180.
    Lokeshwar V, Bourguignon L. Post-translational protein modification and expression of ankyrin-binding site (s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis. J Biol Chem. 1991;266(27):17983–9.PubMedGoogle Scholar
  181. 181.
    Iczkowski KA. Cell adhesion molecule CD44: its functional roles in prostate cancer. Am J Transl Res. 2011;3(1):1.PubMedCentralGoogle Scholar
  182. 182.
    Shimizu Y et al. Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol. 1989;143(8):2457–63.PubMedGoogle Scholar
  183. 183.
    Trochon V et al. Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int J Cancer. 1996;66(5):664–8.PubMedGoogle Scholar
  184. 184.
    Webb D et al. LFA-3, CD44, and CD45: physiologic triggers of human monocyte TNF and IL-1 release. Science. 1990;249(4974):1295–7.PubMedGoogle Scholar
  185. 185.
    Aruffo A et al. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61(7):1303–13.PubMedGoogle Scholar
  186. 186.
    Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv Cancer Res. 1997;71:241–319.PubMedGoogle Scholar
  187. 187.
    Naor D et al. CD44 in cancer. Crit Rev Clin Lab Sci. 2002;39(6):527–79.PubMedGoogle Scholar
  188. 188.
    Wielenga VJ et al. CD44 glycoproteins in colorectal cancer: expression, function, and prognostic value. Adv Cancer Res. 1999;77:169–87.Google Scholar
  189. 189.
    Hsieh H et al. Molecular studies into the role of CD44 variants in metastasis in gastric cancer. Mol Pathol. 1999;52(1):25.PubMedCentralPubMedGoogle Scholar
  190. 190.
    Seiter S et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med. 1993;177(2):443–55.PubMedGoogle Scholar
  191. 191.
    Ayhan A, Tok EC, Bildirici I. Overexpression of CD44 variant 6 in human endometrial cancer and its prognostic significance. Gynecol Oncol. 2001;80(3):355–8.PubMedGoogle Scholar
  192. 192.
    Tijink BM et al. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res. 2006;12(20 Pt 1):6064–72.PubMedGoogle Scholar
  193. 193.
    Orian-Rousseau V, Ponta H. Adhesion proteins meet receptors: a common theme? Adv Cancer Res. 2008;101:63–92.PubMedGoogle Scholar
  194. 194.
    Liu C et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.PubMedCentralPubMedGoogle Scholar
  195. 195.
    Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007;7(10):737–49.PubMedGoogle Scholar
  196. 196.
    Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedGoogle Scholar
  197. 197.
    Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2010;188(1):11–9.PubMedCentralPubMedGoogle Scholar
  198. 198.
    Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol. 2004;16(1):14–23.PubMedGoogle Scholar
  199. 199.
    Yilmaz M, Christofori G, Lehembre F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med. 2007;13(12):535–41.PubMedGoogle Scholar
  200. 200.
    Gray RS, Cheung KJ, Ewald AJ. Cellular mechanisms regulating epithelial morphogenesis and cancer invasion. Curr Opin Cell Biol. 2010;22(5):640–50.PubMedCentralPubMedGoogle Scholar
  201. 201.
    Gaggioli C et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9(12):1392–400.PubMedGoogle Scholar
  202. 202.
    Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 2003;3(12):921–30.PubMedGoogle Scholar
  203. 203.
    Mandeville J, Lawson MA, Maxfield FR. Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J Leukocyte Biol. 1997;61(2):188–200.PubMedGoogle Scholar
  204. 204.
    Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol. 2003;5(8):711–9.PubMedGoogle Scholar
  205. 205.
    Rösel D et al. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008;6(9):1410–20.PubMedGoogle Scholar
  206. 206.
    Micuda S et al. ROCK inhibitors as emerging therapeutic candidates for sarcomas. Curr Cancer Drug Targets. 2010;10(2):127–34.PubMedGoogle Scholar
  207. 207.
    Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–74.PubMedGoogle Scholar
  208. 208.
    Wyckoff JB et al. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol. 2006;16(15):1515–23.PubMedGoogle Scholar
  209. 209.
    Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol. 2009;185(1):11–9.PubMedCentralPubMedGoogle Scholar
  210. 210.
    Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discovery. 2006;5(9):785–99.PubMedGoogle Scholar
  211. 211.
    Rawlings ND, Tolle DP, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res. 2004;32 suppl 1:D160–4.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Boy R.G., et al. Enzymes/transporters, in Molecular imaging II. 2008, Springer. p. 131-143.Google Scholar
  213. 213.
    Yang Y et al. Molecular imaging of proteases in cancer. Cancer Growth Metastasis. 2009;2:13.PubMedCentralPubMedGoogle Scholar
  214. 214.
    Woodward JK et al. The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone. 2007;41(6):912–27.PubMedGoogle Scholar
  215. 215.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.PubMedGoogle Scholar
  216. 216.
    Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol. 2005;6(1):32–43.PubMedGoogle Scholar
  217. 217.
    López-Otín C, Overall CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 2002;3(7):509–19.PubMedGoogle Scholar
  218. 218.
    López-Otín C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8.PubMedGoogle Scholar
  219. 219.
    Sympson C.J., Bissell M.J. ,and Werb Z. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1. in Seminars in cancer biology. 1995. NIH Public Access.Google Scholar
  220. 220.
    Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta. 2000;291(2):113–35.PubMedGoogle Scholar
  221. 221.
    Shim K-N et al. Clinical significance of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric cancer. J Gastroenterol. 2007;42(2):120–8.PubMedGoogle Scholar
  222. 222.
    Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarker s and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287–97.PubMedCentralPubMedGoogle Scholar
  223. 223.
    Chu D et al. Matrix metalloproteinase‐9 is associated with disease‐free survival and overall survival in patients with gastric cancer. Int J Cancer. 2011;129(4):887–95.PubMedGoogle Scholar
  224. 224.
    Gerstein E et al. Comparative enzyme immunoassay of matrix metalloproteinases-2,-7,-9 and their tissue inhibitor-2 in tumors and plasma of patients with gastric cancer. Bull Exp Biol Med. 2009;148(6):899–902.PubMedGoogle Scholar
  225. 225.
    Fanjul-Fernández M et al. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2010;1803(1):3–19.Google Scholar
  226. 226.
    Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011;48(1):44–53.PubMedGoogle Scholar
  227. 227.
    Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2010;1803(1):55–71.Google Scholar
  228. 228.
    Lambert E et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol. 2004;49(3):187–98.PubMedGoogle Scholar
  229. 229.
    Remacle A et al. Furin regulates the intracellular activation and the uptake rate of cell surface-associated MT1-MMP. Oncogene. 2006;25(41):5648–55.PubMedGoogle Scholar
  230. 230.
    Hua H et al. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci. 2011;68(23):3853–68.PubMedGoogle Scholar
  231. 231.
    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.PubMedGoogle Scholar
  232. 232.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.PubMedCentralPubMedGoogle Scholar
  233. 233.
    Hojilla CV, Wood GA, Khokha R. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res. 2008;10(2):205.PubMedCentralPubMedGoogle Scholar
  234. 234.
    Kähäri V-M, Saarialho-Kere U. Trends in molecular medicine: matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med. 1999;31(1):34–45.PubMedGoogle Scholar
  235. 235.
    Ala-aho R, Kähäri V-M. Collagenases in cancer. Biochimie. 2005;87(3):273–86.PubMedGoogle Scholar
  236. 236.
    Husmann K et al. Matrix metalloproteinase 1 promotes tumor formation and lung metastasis in an intratibial injection osteosarcoma mouse model. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2013;1832(2):p. 347–354.Google Scholar
  237. 237.
    Brinckerhoff CE, Rutter JL, Benbow U. Interstitial collagenases as markers of tumor progression. Clin Cancer Res. 2000;6(12):4823–30.PubMedGoogle Scholar
  238. 238.
    Trivedi V et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell. 2009;137(2):332–43.PubMedCentralPubMedGoogle Scholar
  239. 239.
    Vincenti MP et al. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev™ Eukaryot Gene Expr. 1996;6(4):391–411.Google Scholar
  240. 240.
    Huntington JT et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem. 2004;279(32):33168–76.PubMedGoogle Scholar
  241. 241.
    Nikkola J et al. High expression levels of collagenase‐1 and stromelysin‐1 correlate with shorter disease‐free survival in human metastatic melanoma. Int J Cancer. 2002;97(4):432–8.PubMedGoogle Scholar
  242. 242.
    Iida J, McCarthy JB. Expression of collagenase-1 (MMP-1) promotes melanoma growth through the generation of active transforming growth factor-β. Melanoma Res. 2007;17(4):205–13.PubMedGoogle Scholar
  243. 243.
    Hotary KB et al. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell. 2003;114(1):33–45.PubMedGoogle Scholar
  244. 244.
    Goerge T et al. Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res. 2006;66(15):7766–74.PubMedGoogle Scholar
  245. 245.
    Blackburn JS et al. A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene. 2009;28(48):4237–48.PubMedCentralPubMedGoogle Scholar
  246. 246.
    Foley CJ et al. Matrix metalloprotease-1a promotes tumorigenesis and metastasis. J Biol Chem. 2012;287(29):24330–8.PubMedCentralPubMedGoogle Scholar
  247. 247.
    Kamel H et al. Immunoexpression of matrix metalloproteinase-2 (MMP-2) in malignant ovarian epithelial tumours. J Obstet Gynaecol Can. 2010;32(6):580–6.PubMedGoogle Scholar
  248. 248.
    Määttä M et al. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin Cancer Res. 2000;6(7):2726–34.PubMedGoogle Scholar
  249. 249.
    Galis ZS et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994;75(1):181–9.PubMedGoogle Scholar
  250. 250.
    Łukaszewicz-Zając M, Mroczko B, Szmitkowski M. Gastric cancer—the role of matrix metalloproteinases in tumor progression. Clin Chim Acta. 2011;412(19):1725–30.PubMedGoogle Scholar
  251. 251.
    Ben-Yosef Y et al. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol-Cell Physiol. 2005;289(5):C1321–31.PubMedGoogle Scholar
  252. 252.
    McQuibban GA et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 2000;289(5482):1202–6.PubMedGoogle Scholar
  253. 253.
    Duong TD, Erickson CA. MMP‐2 plays an essential role in producing epithelial‐mesenchymal transformations in the avian embryo. Dev Dyn. 2004;229(1):42–53.PubMedGoogle Scholar
  254. 254.
    Chetty C et al. MMP-2 siRNA induced Fas/CD95-mediated extrinsic II apoptotic pathway in the A549 lung adenocarcinoma cell line. Oncogene. 2007;26(55):7675–83.PubMedCentralPubMedGoogle Scholar
  255. 255.
    Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem. 2001;276(11):8403–8.PubMedGoogle Scholar
  256. 256.
    López-Otín C, Palavalli LH, Samuels Y. Protective roles of matrix metalloproteinases. Cell Cycle. 2009;8(22):3657–62.PubMedCentralPubMedGoogle Scholar
  257. 257.
    Van Lint P, Libert C. Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev. 2006;17(4):217–23.PubMedGoogle Scholar
  258. 258.
    Väyrynen JP et al. Serum MMP‐8 levels increase in colorectal cancer and correlate with disease course and inflammatory properties of primary tumors. Int J Cancer. 2012;131(4):E463–74.PubMedGoogle Scholar
  259. 259.
    Thirkettle S et al. Matrix metalloproteinase 8 (collagenase 2) induces the expression of interleukins 6 and 8 in breast cancer cells. J Biol Chem. 2013;288(23):16282–94.PubMedCentralPubMedGoogle Scholar
  260. 260.
    Decock J et al. Association of matrix metalloproteinase-8 gene variation with breast cancer prognosis. Cancer Res. 2007;67(21):10214–21.PubMedGoogle Scholar
  261. 261.
    Stuelten CH et al. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-α and TGF-β. J Cell Sci. 2005;118(10):2143–53.PubMedGoogle Scholar
  262. 262.
    Hallett MA et al. Anti-matrix metalloproteinase-9 DNAzyme decreases tumor growth in the MMTV-PyMT mouse model of breast cancer. Breast Cancer Res. 2013;15(1):R12.PubMedCentralPubMedGoogle Scholar
  263. 263.
    Morini M et al. The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP‐9) activity. Int J Cancer. 2000;87(3):336–42.PubMedGoogle Scholar
  264. 264.
    Watanabe H et al. Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion. J Cell Sci. 1993;104(4):991–9.PubMedGoogle Scholar
  265. 265.
    Coussens LM et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13(11):1382–97.PubMedCentralPubMedGoogle Scholar
  266. 266.
    Hojilla C, Mohammed F, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer. 2003;89(10):1817–21.PubMedCentralPubMedGoogle Scholar
  267. 267.
    Bhoopathi P et al. Blockade of tumor growth due to matrix metalloproteinase-9 inhibition is mediated by sequential activation of β1-integrin, ERK, and NF-κB. J Biol Chem. 2008;283(3):1545–52.PubMedCentralPubMedGoogle Scholar
  268. 268.
    Jordà M et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci. 2005;118(15):3371–85.PubMedGoogle Scholar
  269. 269.
    Xu D et al. Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1. Cancer Res. 2010;70(17):6988–98.PubMedCentralPubMedGoogle Scholar
  270. 270.
    Tester AM et al. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS One. 2007;2(3):e312.PubMedCentralPubMedGoogle Scholar
  271. 271.
    Kim M-J et al. TNF-α induces expression of urokinase-type plasminogen activator and β-catenin activation through generation of ROS in human breast epithelial cells. Biochem Pharmacol. 2010;80(12):2092–100.PubMedGoogle Scholar
  272. 272.
    Zhang S et al. Imbalance between expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in invasiveness and metastasis of human gastric carcinoma. World J Gastroenterol: WJG. 2003;9(5):899–904.PubMedGoogle Scholar
  273. 273.
    Wu ZS et al. Prognostic significance of MMP‐9 and TIMP‐1 serum and tissue expression in breast cancer. Int J Cancer. 2008;122(9):2050–6.PubMedGoogle Scholar
  274. 274.
    Mroczko B et al. The diagnostic value of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) determination in the sera of colorectal adenoma and cancer patients. Int J Color Dis. 2010;25(10):1177–84.Google Scholar
  275. 275.
    Zhang M et al. Expression of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric adenocarcinoma. J Surg Oncol. 2011;103(3):243–7.PubMedGoogle Scholar
  276. 276.
    Freije JM et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994;269(24):16766–73.PubMedGoogle Scholar
  277. 277.
    Knäuper V et al. Cellular mechanisms for human procollagenase-3 (MMP-13) activation: evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem. 1996;271(29):17124–31.PubMedGoogle Scholar
  278. 278.
    Cowell S et al. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem J. 1998;331:453–8.PubMedCentralPubMedGoogle Scholar
  279. 279.
    Johansson N et al. Collagenase‐3 (MMP‐13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Dyn. 1997;208(3):387–97.PubMedGoogle Scholar
  280. 280.
    Ravanti L et al. Expression of human collagenase-3 (MMP-13) by fetal skin fibroblasts is induced by transforming growth factor β via p38 mitogen-activated protein kinase. FASEB J. 2001;15(6):1098–100.PubMedGoogle Scholar
  281. 281.
    Mitchell PG et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97(3):761.PubMedCentralPubMedGoogle Scholar
  282. 282.
    McQuibban GA et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276(47):43503–8.PubMedGoogle Scholar
  283. 283.
    Uitto V-J et al. Collagenase-3 (matrix metalloproteinase-13) expression is induced in oral mucosal epithelium during chronic inflammation. Am J Pathol. 1998;152(6):1489.PubMedCentralPubMedGoogle Scholar
  284. 284.
    Zhang Y et al. Overexpression of tyrosine kinase B protein as a predictor for distant metastases and prognosis in gastric carcinoma. Oncology. 2008;75(1–2):17–26.PubMedGoogle Scholar
  285. 285.
    Yamada T et al. Overexpression of MMP-13 gene in colorectal cancer with liver metastasis. Anticancer Res. 2010;30(7):2693–9.PubMedGoogle Scholar
  286. 286.
    Mäkinen LK et al. Prognostic significance of matrix metalloproteinase‐2, ‐8, ‐9, and ‐13 in oral tongue cancer. J Oral Pathol Med. 2012;41(5):394–9.PubMedGoogle Scholar
  287. 287.
    Kominsky SL et al. MMP-13 is over-expressed in renal cell carcinoma bone metastasis and is induced by TGF-β1. Clin Exp Metastasis. 2008;25(8):865–70.PubMedGoogle Scholar
  288. 288.
    Hsu C-P, Shen G-H, Ko J-L. Matrix metalloproteinase-13 expression is associated with bone marrow microinvolvement and prognosis in non-small cell lung cancer. Lung Cancer. 2006;52(3):349–57.PubMedGoogle Scholar
  289. 289.
    Heikkilä P et al. Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines. Anti-Cancer Drugs. 2002;13(3):245–54.PubMedGoogle Scholar
  290. 290.
    Luukkaa M et al. Association between high collagenase‐3 expression levels and poor prognosis in patients with head and neck cancer. Head Neck. 2006;28(3):225–34.PubMedGoogle Scholar
  291. 291.
    Wang J et al. Expression of MMP-13 is associated with invasion and metastasis of papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 2013;17(4):427–35.PubMedGoogle Scholar
  292. 292.
    Koshikawa N et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol. 2000;148(3):615–24.PubMedCentralPubMedGoogle Scholar
  293. 293.
    Koshikawa N et al. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin γ2 chain. J Biol Chem. 2005;280(1):88–93.PubMedGoogle Scholar
  294. 294.
    Sadowski T et al. Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration. Cell Mol Life Sci CMLS. 2005;62(7–8):870–80.PubMedGoogle Scholar
  295. 295.
    Mañes S et al. The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem. 1999;274(11):6935–45.PubMedGoogle Scholar
  296. 296.
    Rorive S et al. Matrix metalloproteinase‐9 interplays with the IGFBP2–IGFII complex to promote cell growth and motility in astrocytomas. Glia. 2008;56(15):1679–90.PubMedGoogle Scholar
  297. 297.
    Noë V et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci. 2001;114(1):111–8.PubMedGoogle Scholar
  298. 298.
    Maretzky T et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci U S A. 2005;102(26):9182–7.PubMedCentralPubMedGoogle Scholar
  299. 299.
    Illman SA et al. Epilysin (MMP-28) induces TGF-β mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci. 2006;119(18):3856–65.PubMedGoogle Scholar
  300. 300.
    Koshikawa N et al. Membrane type 1-matrix metalloproteinase cleaves off the NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor. Cancer Res. 2010;70(14):6093–103.PubMedGoogle Scholar
  301. 301.
    Loechel F, Wewer UM. Activation of ADAM 12 protease by copper. FEBS Lett. 2001;506(1):65–8.PubMedGoogle Scholar
  302. 302.
    Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995;7(5):728–35.PubMedGoogle Scholar
  303. 303.
    Hawinkels LJ et al. Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res. 2010;70(10):4141–50.PubMedGoogle Scholar
  304. 304.
    Pozzi A et al. Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci U S A. 2000;97(5):2202–7.PubMedCentralPubMedGoogle Scholar
  305. 305.
    Chang J-H et al. Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Lett. 2005;579(17):3601–6.PubMedGoogle Scholar
  306. 306.
    Wen W et al. The generation of endostatin is mediated by elastase. Cancer Res. 1999;59(24):6052–6.PubMedGoogle Scholar
  307. 307.
    Jawad MU et al. Matrix metalloproteinase 1: role in sarcoma biology. PLoS One. 2010;5(12):e14250.PubMedCentralPubMedGoogle Scholar
  308. 308.
    Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res. 2002;91(9):845–51.PubMedGoogle Scholar
  309. 309.
    Limb GA et al. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol. 2005;166(5):1555–63.PubMedCentralPubMedGoogle Scholar
  310. 310.
    Balbín M et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003;35(3):252–7.PubMedGoogle Scholar
  311. 311.
    Gutiérrez-Fernández A et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 2008;68(8):2755–63.PubMedGoogle Scholar
  312. 312.
    Acuff HB et al. Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res. 2006;66(16):7968–75.PubMedGoogle Scholar
  313. 313.
    Houghton AM et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 2006;66(12):6149–55.PubMedGoogle Scholar
  314. 314.
    Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9–34.PubMedGoogle Scholar
  315. 315.
    Ramnath N, Creaven PJ. Matrix metalloproteinase inhibitors. Curr Oncol Rep. 2004;6(2):96–102.PubMedGoogle Scholar
  316. 316.
    Bourboulia D. and Stetler-Stevenson.W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. in Seminars in cancer biology. 2010. Elsevier.Google Scholar
  317. 317.
    Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J National Cancer Inst. 1994;86(4):299–304.Google Scholar
  318. 318.
    Schrötzlmair F et al. Tissue inhibitor of metalloproteinases‐1‐induced scattered liver metastasis is mediated by host‐derived urokinase‐type plasminogen activator. J Cell Mol Med. 2010;14(12):2760–70.PubMedCentralPubMedGoogle Scholar
  319. 319.
    Bigelow RL et al. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat. 2009;117(1):31–44.PubMedGoogle Scholar
  320. 320.
    Guedez L et al. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest. 1998;102(11):2002.PubMedCentralPubMedGoogle Scholar
  321. 321.
    Hayakawa T et al. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett. 1992;298(1):29–32.PubMedGoogle Scholar
  322. 322.
    Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit Basic Res. 2009;15(2):RA32–40.Google Scholar
  323. 323.
    Caterina JJ et al. Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2 (Timp-2) gene alters proMMP-2 activation. J Biol Chem. 2000;275(34):26416–22.PubMedGoogle Scholar
  324. 324.
    Bigg HF et al. Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J Biol Chem. 1997;272(24):15496–500.PubMedGoogle Scholar
  325. 325.
    Liacini A et al. Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated by MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. Exp Cell Res. 2003;288(1):208–17.PubMedGoogle Scholar
  326. 326.
    Rozanov DV et al. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem. 2004;279(6):4260–8.PubMedGoogle Scholar
  327. 327.
    Eccles SA et al. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 1996;56(12):2815–22.PubMedGoogle Scholar
  328. 328.
    Prontera C et al. Inhibition of gelatinase A (MMP‐2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma. Int J Cancer. 1999;81(5):761–6.PubMedGoogle Scholar
  329. 329.
    Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001;93(3):178–93.PubMedGoogle Scholar
  330. 330.
    Scatena R. Prinomastat, a hydroxamate-based matrix metalloproteinase inhibitor. A novel pharmacological approach for tissue remodelling-related diseases. Expert Opin Invest Drugs. 2000;9(9):2159–65.Google Scholar
  331. 331.
    Liu J et al. Early combined treatment with carboplatin and the MMP inhibitor, prinomastat, prolongs survival and reduces systemic metastasis in an aggressive orthotopic lung cancer model. Lung Cancer. 2003;42(3):335–44.PubMedGoogle Scholar
  332. 332.
    Hoffman A et al. Carbamoylphosphonate matrix metalloproteinase inhibitors 6: cis-2-aminocyclohexylcarbamoylphosphonic acid, a novel orally active antimetastatic matrix metalloproteinase-2 selective inhibitor—synthesis and pharmacodynamic and pharmacokinetic analysis. J Med Chem. 2008;51(5):1406–14.PubMedGoogle Scholar
  333. 333.
    Maquoi E et al. Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2,4,6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res. 2004;10(12):4038–47.PubMedGoogle Scholar
  334. 334.
    Lubbe WJ et al. Tumor epithelial cell matrix metalloproteinase 9 is a target for antimetastatic therapy in colorectal cancer. Clin Cancer Res. 2006;12(6):1876–82.PubMedGoogle Scholar
  335. 335.
    Tao P et al. Matrix metalloproteinase 2 inhibition: combined quantum mechanics and molecular mechanics studies of the inhibition mechanism of (4-phenoxyphenylsulfonyl) methylthiirane and its oxirane analogue. Biochemistry. 2009;48(41):9839–47.PubMedCentralPubMedGoogle Scholar
  336. 336.
    Krüger A et al. Antimetastatic activity of a novel mechanism-based gelatinase inhibitor. Cancer Res. 2005;65(9):3523–6.PubMedGoogle Scholar
  337. 337.
    Bonfil RD et al. Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism‐based selective gelatinase inhibitor. Int J Cancer. 2006;118(11):2721–6.PubMedGoogle Scholar
  338. 338.
    Devy L et al. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res. 2009;69(4):1517–26.PubMedGoogle Scholar
  339. 339.
    Rawlings ND, Barrett AJ. Families of serine peptidases. Methods Enzymol. 1993;244:19–61.Google Scholar
  340. 340.
    Netzel-Arnett S et al. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev. 2003;22(2–3):237–58.PubMedGoogle Scholar
  341. 341.
    Duffy MJ et al. Urokinase‐plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer. 1988;62(3):531–3.PubMedGoogle Scholar
  342. 342.
    Stepanova V, Tkachuk V. Urokinase as a multidomain protein and polyfunctional cell regulator. Biochemistry (Moscow). 2002;67(1):109–18.Google Scholar
  343. 343.
    Thummarati P et al. High level of urokinase plasminogen activator contributes to cholangiocarcinoma invasion and metastasis. World J Gastroenterol: WJG. 2012;18(3):244.PubMedCentralPubMedGoogle Scholar
  344. 344.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.PubMedGoogle Scholar
  345. 345.
    Ulisse S et al. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets. 2009;9(1):32–71.PubMedGoogle Scholar
  346. 346.
    Dass K et al. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008;34(2):122–36.PubMedGoogle Scholar
  347. 347.
    Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol. 2000;12(5):613–20.PubMedGoogle Scholar
  348. 348.
    Yu W, Kim J, Ossowski L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J Cell Biol. 1997;137(3):767–77.PubMedCentralPubMedGoogle Scholar
  349. 349.
    Choong PF, Nadesapillai AP. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res. 2003;415:S46–58.PubMedGoogle Scholar
  350. 350.
    Binder BR, Mihaly J, Prager GW. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist’s view. Thromb Haemost-Stuttgart-. 2007;97(3):336.Google Scholar
  351. 351.
    Pepper MS. Role of the matrix metalloproteinase and plasminogen activator–plasmin systems in angiogenesis. Arterioscler, Thromb, Vasc Biol. 2001;21(7):1104–17.Google Scholar
  352. 352.
    Gondi CS et al. Downregulation of uPAR and uPA activates caspase mediated apoptosis, inhibits the PI3k/AKT pathway. Int J Oncol. 2007;31(1):19.PubMedCentralPubMedGoogle Scholar
  353. 353.
    Prager GW et al. Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein. Blood. 2009;113(6):1383–90.PubMedGoogle Scholar
  354. 354.
    Shetty S et al. Urokinase induces activation of STAT3 in lung epithelial cells. Am J Physiol-Lung Cell Mol Physiol. 2006;291(4):L772–80.PubMedGoogle Scholar
  355. 355.
    Malinowsky K et al. uPA and PAI-1-related signaling pathways differ between primary breast cancers and lymph node metastases. Transl Oncol. 2012;5(2):98–IN3.PubMedCentralPubMedGoogle Scholar
  356. 356.
    Ghamande SA et al. A phase 2, randomized, double-blind, placebo-controlled trial of clinical activity and safety of subcutaneous A6 in women with asymptomatic CA125 progression after first-line chemotherapy of epithelial ovarian cancer. Gynecol Oncol. 2008;111(1):89–94.PubMedGoogle Scholar
  357. 357.
    Ellis V, Dano K. Specific inhibition of the activity of the urokinase receptor-mediated cell-surface plasminogen activation system by suramin. Biochem J. 1993;296(Pt 2):505–10.PubMedCentralPubMedGoogle Scholar
  358. 358.
    Schmitt M et al. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn. 2011;11(6):617–34.PubMedGoogle Scholar
  359. 359.
    Benes P, Vetvicka V, Fusek M. Cathepsin D—many functions of one aspartic protease. Crit Rev Oncol Hematol. 2008;68(1):12–28.PubMedCentralPubMedGoogle Scholar
  360. 360.
    Liaudet-Coopman E et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237(2):167–79.PubMedGoogle Scholar
  361. 361.
    Masson O et al. Pathophysiological functions of cathepsin D: targeting its catalytic activity versus its protein binding activity? Biochimie. 2010;92(11):1635–43.PubMedGoogle Scholar
  362. 362.
    Fuseka M, Vetvicka V. Dual role of cathepsin D: ligand and protease. Biomed Papers. 2005;149(1):43–50.Google Scholar
  363. 363.
    Baechle D et al. Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1 L. J Biol Chem. 2006;281(9):5406–15.PubMedGoogle Scholar
  364. 364.
    Nirdé P et al. Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene. 2009;29(1):117–27.PubMedCentralPubMedGoogle Scholar
  365. 365.
    Erdmann S et al. Inflammatory cytokines increase extracellular procathepsin D in permanent and primary endothelial cell cultures. Eur J Cell Biol. 2008;87(5):311–23.PubMedGoogle Scholar
  366. 366.
    Bromme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs. 2009;18(5):585–600.PubMedCentralPubMedGoogle Scholar
  367. 367.
    Clezardin P. Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res. 2011;13(2):207.PubMedCentralPubMedGoogle Scholar
  368. 368.
    Sudhan DR, Siemann DW. Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis. 2013;30(7):891–902.PubMedGoogle Scholar
  369. 369.
    Ward C et al. Antibody targeting of cathepsin S inhibits angiogenesis and synergistically enhances anti-VEGF. PLoS One. 2010;5(9):e12543.PubMedCentralPubMedGoogle Scholar
  370. 370.
    Burden RE et al. Inhibition of cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie. 2012;94(2):487–93.PubMedGoogle Scholar
  371. 371.
    Dabrosin C, Johansson AC, Ollinger K. Decreased secretion of cathepsin D in breast cancer in vivo by tamoxifen: mediated by the mannose-6-phosphate/IGF-II receptor? Breast Cancer Res Treat. 2004;85(3):229–38.PubMedGoogle Scholar
  372. 372.
    Vasiljeva O et al. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des. 2007;13(4):387–403.PubMedGoogle Scholar
  373. 373.
    Elie BT et al. Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie. 2010;92(11):1618–24.PubMedGoogle Scholar
  374. 374.
    Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 2001;20(17):4629–33.PubMedCentralPubMedGoogle Scholar
  375. 375.
    Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci. 2008;29(1):22–8.PubMedGoogle Scholar
  376. 376.
    Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.PubMedGoogle Scholar
  377. 377.
    Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Investig. 2010;120(10):3421–31.PubMedCentralPubMedGoogle Scholar
  378. 378.
    Kosa’b J. Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Adv Enzyme Regul. 2002;42:285.Google Scholar
  379. 379.
    Watts C. The endosome–lysosome pathway and information generation in the immune system. Biochimica et Biophysica Acta (BBA)-Proteins and. Proteomics. 2012;1824(1):14–21.Google Scholar
  380. 380.
    Rothberg JM et al. Live-cell imaging of tumor proteolysis: impact of cellular and non-cellular microenvironment. Biochimica et Biophysica Acta (BBA)-Proteins and. Proteomics. 2012;1824(1):123–32.Google Scholar
  381. 381.
    Dauth S et al. Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits. BMC Neurosci. 2011;12(1):74.PubMedCentralPubMedGoogle Scholar
  382. 382.
    Jedeszko C, Sloane BF. Cysteine cathepsins in human cancer. Biol Chem. 2004;385(11):1017–27.PubMedGoogle Scholar
  383. 383.
    Berdowska I. Cysteine proteases as disease markers. Clin Chim Acta. 2004;342(1):41–69.PubMedGoogle Scholar
  384. 384.
    Arvatz G et al. The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev. 2011;30(2):253–68.PubMedGoogle Scholar
  385. 385.
    Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays. 2005;27(9):894–903.PubMedGoogle Scholar
  386. 386.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2008;9(4):239–52.PubMedCentralPubMedGoogle Scholar
  387. 387.
    Reinheckel T et al. Differential impact of cysteine cathepsins on genetic mouse models of de novo carcinogenesis: cathepsin B as emerging therapeutic target. Front Pharmacol. 2012;3:133.PubMedCentralPubMedGoogle Scholar
  388. 388.
    Mitchell BS. The proteasome—an emerging therapeutic target in cancer. N Engl J Med. 2003;348(26):2597–8.PubMedGoogle Scholar
  389. 389.
    Kane RC et al. Velcade®: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8(6):508–13.PubMedGoogle Scholar
  390. 390.
    Zavrski I et al. Proteasome: an emerging target for cancer therapy. Anti-Cancer Drugs. 2005;16(5):475–81.PubMedGoogle Scholar
  391. 391.
    Kane RC et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13(18):5291–4.PubMedGoogle Scholar
  392. 392.
    Chen D et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011;11(3):239.PubMedCentralPubMedGoogle Scholar
  393. 393.
    Berenson JR et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol. 2006;24(6):937–44.PubMedGoogle Scholar
  394. 394.
    Kane RC et al. United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res. 2006;12(10):2955–60.PubMedGoogle Scholar
  395. 395.
    Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nature. 2001;411(6835):375–9.PubMedGoogle Scholar
  396. 396.
    Hughes-Alford SK, Lauffenburger DA. Quantitative analysis of gradient sensing: towards building predictive models of chemotaxis in cancer. Curr Opin Cell Biol. 2012;24(2):284–91.PubMedCentralPubMedGoogle Scholar
  397. 397.
    Onuffer JJ, Horuk R. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol Sci. 2002;23(10):459–67.PubMedGoogle Scholar
  398. 398.
    Ebert LM, Schaerli P, Moser B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol. 2005;42(7):799–809.PubMedGoogle Scholar
  399. 399.
    Kedrin D et al. Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):143–52.PubMedGoogle Scholar
  400. 400.
    Bodnar RJ et al. IP-10 induces dissociation of newly formed blood vessels. J Cell Sci. 2009;122(12):2064–77.PubMedCentralPubMedGoogle Scholar
  401. 401.
    Wells A et al. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 2013;34(5):283–9.PubMedCentralPubMedGoogle Scholar
  402. 402.
    do Carmo A et al. CXCL12/CXCR4 promotes motility and proliferation of glioma cells. Cancer Biol Ther. 2010;9(1):p. 56–65.Google Scholar
  403. 403.
    Dai X et al. The CXCL12/CXCR4 autocrine loop increases the metastatic potential of non-small cell lung cancer in vitro. Oncol Lett. 2013;5(1):277–82.PubMedCentralPubMedGoogle Scholar
  404. 404.
    Zlotnik A. Chemokines and cancer. Int J Cancer. 2006;119(9):2026–9.PubMedGoogle Scholar
  405. 405.
    Dewan M et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273–6.PubMedGoogle Scholar
  406. 406.
    Kato M et al. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res. 2003;5(5):R144–50.PubMedCentralPubMedGoogle Scholar
  407. 407.
    Riese DJ, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays. 1998;20(1):41–8.PubMedGoogle Scholar
  408. 408.
    Xue C et al. Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 2006;66(1):192–7.PubMedGoogle Scholar
  409. 409.
    Ma PC et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22(4):309–25.PubMedGoogle Scholar
  410. 410.
    Micke P. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 2004;45:S163–75.PubMedGoogle Scholar
  411. 411.
    Qian L-W et al. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett. 2003;190(1):105–12.PubMedGoogle Scholar
  412. 412.
    Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett. 2006;238(1):30–41.PubMedGoogle Scholar
  413. 413.
    Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107(5):1761–7.PubMedGoogle Scholar
  414. 414.
    Takebe N et al. Review of cancer-associated fibroblasts and therapies that interfere with their activity. Tumor Microenvironment Ther. 2013;1:19–36.Google Scholar
  415. 415.
    Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol. 2003;65(1):761–89.PubMedGoogle Scholar
  416. 416.
    Hurley JH. Membrane binding domains. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of. Lipids. 2006;1761(8):805–11.Google Scholar
  417. 417.
    Barber MA, Welch HC. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer. 2006;93(5):10044–52.Google Scholar
  418. 418.
    Hall A. Rho GTPases and the control of cell behaviour. Biochem Soc Trans. 2005;33:891–5.PubMedGoogle Scholar
  419. 419.
    Bravo-Cordero JJ et al. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol. 2011;21(8):635–44.PubMedCentralPubMedGoogle Scholar
  420. 420.
    Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65.PubMedGoogle Scholar
  421. 421.
    Mouneimne G et al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol. 2004;166(5):697–708.PubMedCentralPubMedGoogle Scholar
  422. 422.
    Wilkinson S, Paterson HF, Marshall CJ. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol. 2005;7(3):255–61.PubMedGoogle Scholar
  423. 423.
    Kopp F et al. Salinomycin treatment reduces metastatic tumor burden by hampering cancer cell migration. Mol Cancer. 2014;13:16.PubMedCentralPubMedGoogle Scholar
  424. 424.
    Kumar P et al. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis. Mol Cancer. 2010;9:206.PubMedCentralPubMedGoogle Scholar
  425. 425.
    Palmer TD et al. Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression. Cancer Res. 2014;74(1):173–87.PubMedCentralPubMedGoogle Scholar
  426. 426.
    Wang S et al. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLoS One. 2013;8(2):e56448.PubMedCentralPubMedGoogle Scholar
  427. 427.
    Wolf K et al. Compensation mechanism in tumor cell migration mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003;160(2):267–77.PubMedCentralPubMedGoogle Scholar
  428. 428.
    Thiery JP et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedGoogle Scholar
  429. 429.
    Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24(2):277–83.PubMedCentralPubMedGoogle Scholar
  430. 430.
    Wang W et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 2007;67(8):3505–11.PubMedGoogle Scholar
  431. 431.
    Olson MF, Sahai E. The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis. 2009;26(4):273–87.PubMedGoogle Scholar
  432. 432.
    Vignjevic, D. and Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. in Seminars in cancer biology. 2008. Elsevier.Google Scholar
  433. 433.
    Buccione R, Caldieri G, Ayala I. Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev. 2009;28(1–2):137–49.PubMedGoogle Scholar
  434. 434.
    Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010;8(5):629–42.PubMedGoogle Scholar
  435. 435.
    Condeelis J.S. et al. Lamellipodia in invasion. in Seminars in cancer biology. 2001. Elsevier.Google Scholar
  436. 436.
    Wang W et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 2002;62(21):6278–88.PubMedGoogle Scholar
  437. 437.
    Vignjevic D et al. Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res. 2007;67(14):6844–53.PubMedGoogle Scholar
  438. 438.
    Mongiu AK et al. Kinetic-structural analysis of neuronal growth cone veil motility. J Cell Sci. 2007;120(6):1113–25.PubMedGoogle Scholar
  439. 439.
    Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.PubMedGoogle Scholar
  440. 440.
    Khoury H et al. Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene. 2001;20(7):788–99.PubMedGoogle Scholar
  441. 441.
    Saltel F et al. Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell. 2004;15(12):5231–41.PubMedCentralPubMedGoogle Scholar
  442. 442.
    Caldieri G et al. Invadopodia biogenesis is regulated by caveolin‐mediated modulation of membrane cholesterol levels. J Cell Mol Med. 2009;13(8b):1728–40.PubMedGoogle Scholar
  443. 443.
    Kelly T et al. Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis. 1998;16(6):501–12.PubMedGoogle Scholar
  444. 444.
    Tague SE, Muralidharan V, D’Souza-Schorey C. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci U S A. 2004;101(26):9671–6.PubMedCentralPubMedGoogle Scholar
  445. 445.
    Oxmann D et al. Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene. 2008;27(25):3567–75.PubMedGoogle Scholar
  446. 446.
    Clark ES et al. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 2007;67(9):4227–35.PubMedGoogle Scholar
  447. 447.
    Artym VV et al. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 2006;66(6):3034–43.PubMedGoogle Scholar
  448. 448.
    Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.PubMedGoogle Scholar
  449. 449.
    Zervantonakis IK et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A. 2012;109(34):13515–20.PubMedCentralPubMedGoogle Scholar
  450. 450.
    Quigley JP, Armstrong PB. Tumor cell intravasation Alu-cidated: the chick embryo opens the window. Cell. 1998;94(3):281–4.PubMedGoogle Scholar
  451. 451.
    Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys. 2009;38:301–26.PubMedGoogle Scholar
  452. 452.
    Yeung T et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Mot Cytoskeleton. 2005;60(1):24–34.Google Scholar
  453. 453.
    Baker EL, Bonnecaze RT, Zaman MH. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys J. 2009;97(4):1013–21.PubMedCentralPubMedGoogle Scholar
  454. 454.
    Baker EL et al. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J. 2010;99(7):2048–57.PubMedCentralPubMedGoogle Scholar
  455. 455.
    Lee JS et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J Cell Sci. 2006;119(9):1760–8.PubMedGoogle Scholar
  456. 456.
    Cross SE et al. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007;2(12):780–3.PubMedGoogle Scholar
  457. 457.
    Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 2007;9:229–56.PubMedGoogle Scholar
  458. 458.
    Mycielska ME, Djamgoz MB. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci. 2004;117(9):1631–9.PubMedGoogle Scholar
  459. 459.
    Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 2011;11(7):512–22.PubMedCentralPubMedGoogle Scholar
  460. 460.
    Roussos ET et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci. 2011;124(13):2120–31.PubMedCentralPubMedGoogle Scholar
  461. 461.
    Calvo F, Sahai E. Cell communication networks in cancer invasion. Curr Opin Cell Biol. 2011;23(5):621–9.PubMedGoogle Scholar
  462. 462.
    Giampieri S et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–96.PubMedCentralPubMedGoogle Scholar
  463. 463.
    Zijlstra A et al. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell. 2008;13(3):221–34.PubMedCentralPubMedGoogle Scholar
  464. 464.
    Wyckoff JB et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67(6):2649–56.PubMedGoogle Scholar
  465. 465.
    Bekes EM et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol. 2011;179(3):1455–70.PubMedCentralPubMedGoogle Scholar
  466. 466.
    Weis S et al. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 2004;167(2):223–9.PubMedCentralPubMedGoogle Scholar
  467. 467.
    Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 2007;8(5):444–8.PubMedCentralPubMedGoogle Scholar
  468. 468.
    Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle (Georgetown, Tex). 2006;5(8):812.Google Scholar
  469. 469.
    Bockhorn M et al. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res. 2004;64(7):2469–73.PubMedGoogle Scholar
  470. 470.
    Blood CH, Zetter BR. Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochimica et Biophysica Acta (BBA)-Reviews on. Cancer. 1990;1032(1):89–118.Google Scholar
  471. 471.
    Nash G et al. Platelets and cancer. Lancet Oncol. 2002;3(7):425–30.PubMedGoogle Scholar
  472. 472.
    Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9(4):259–70.PubMedCentralPubMedGoogle Scholar
  473. 473.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.PubMedGoogle Scholar
  474. 474.
    Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.PubMedGoogle Scholar
  475. 475.
    Nathan C. Metchnikoff’s legacy in 2008. Nat Immunol. 2008;9(7):695–8.PubMedGoogle Scholar
  476. 476.
    Hao N-B et al. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;2012:11.Google Scholar
  477. 477.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95.PubMedCentralPubMedGoogle Scholar
  478. 478.
    Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.PubMedGoogle Scholar
  479. 479.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.PubMedCentralPubMedGoogle Scholar
  480. 480.
    Goswami S et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65(12):5278–83.PubMedGoogle Scholar
  481. 481.
    Wyckoff J et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.PubMedGoogle Scholar
  482. 482.
    Laufs S, Schumacher J, Allgayer H. Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle (Georgetown, Tex). 2006;5(16):1760–71.Google Scholar
  483. 483.
    Kitamura T et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet. 2007;39(4):467–75.PubMedGoogle Scholar
  484. 484.
    van Kempen LC, de Visser KE, Coussens LM. Inflammation, proteases and cancer. Eur J Cancer. 2006;42(6):728–34.PubMedGoogle Scholar
  485. 485.
    Cheng K, Xie G, Raufman J-P. Matrix metalloproteinase-7-catalyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochem Pharmacol. 2007;73(7):1001–12.PubMedCentralPubMedGoogle Scholar
  486. 486.
    Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67(11):5064–6.PubMedGoogle Scholar
  487. 487.
    Tsutsui S et al. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep. 2005;14(2):425–31.PubMedGoogle Scholar
  488. 488.
    Bolat F et al. Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. Vascular. 2006;14:15.Google Scholar
  489. 489.
    Oosterling SJ et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol. 2005;207(2):147–55.PubMedGoogle Scholar
  490. 490.
    DeNardo DG, Johansson M, Coussens LM. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008;27(1):11–8.PubMedGoogle Scholar
  491. 491.
    Wang W et al. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 2005;15(3):138–45.PubMedGoogle Scholar
  492. 492.
    Condeelis J, Singer RH, Segall JE. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol. 2005;21:695–718.PubMedGoogle Scholar
  493. 493.
    Yamaguchi H, Pixley F, Condeelis J. Invadopodia and podosomes in tumor invasion. Eur J Cell Biol. 2006;85(3):213–8.PubMedGoogle Scholar
  494. 494.
    Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia. 2002;7(2):177–89.PubMedGoogle Scholar
  495. 495.
    Ries, C.H., et al., Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014Google Scholar
  496. 496.
    Ries CH et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25(6):846–59.PubMedGoogle Scholar
  497. 497.
    Pyonteck SM et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72.PubMedGoogle Scholar
  498. 498.
    Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.PubMedGoogle Scholar
  499. 499.
    Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med. 2011;17(11):1381–90.PubMedGoogle Scholar
  500. 500.
    Huh SJ et al. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010;70(14):6071–82.PubMedCentralPubMedGoogle Scholar
  501. 501.
    Cools-Lartigue J et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Investig. 2013;123(8):3446–58.PubMedCentralGoogle Scholar
  502. 502.
    Teramukai S et al. Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer. 2009;45(11):1950–8.PubMedGoogle Scholar
  503. 503.
    McDonald B et al. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer. 2009;125(6):1298–305.PubMedGoogle Scholar
  504. 504.
    Spicer JD et al. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 2012;72(16):3919–27.PubMedGoogle Scholar
  505. 505.
    Auguste P et al. The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol. 2007;170(5):1781–92.PubMedCentralPubMedGoogle Scholar
  506. 506.
    Liang S et al. Effects of the tumor-leukocyte microenvironment on melanoma–neutrophil adhesion to the endothelium in a shear flow. Cell Mol Biol. 2008;1(2–3):189–200.Google Scholar
  507. 507.
    Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493–8.PubMedCentralPubMedGoogle Scholar
  508. 508.
    Lynn KD, Roland CL, Brekken RA. VEGF and pleiotrophin modulate the immune profile of breast cancer. Cancers. 2010;2(2):970–88.PubMedCentralPubMedGoogle Scholar
  509. 509.
    Lee AM et al. Modeling and simulation of procoagulant circulating tumor cells in flow. Front Oncol. 2012;2:184.Google Scholar
  510. 510.
    Mantovani A et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.PubMedGoogle Scholar
  511. 511.
    Sethi G, Sung B, Aggarwal BB. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13(2):5094–107.PubMedGoogle Scholar
  512. 512.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.PubMedCentralPubMedGoogle Scholar
  513. 513.
    Kumar D et al. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg Med Chem. 2002;10(12):3997–4004.PubMedGoogle Scholar
  514. 514.
    Combe B. Thalidomide: new indications? Joint Bone Spine. 2001;68(6):582–7.PubMedGoogle Scholar
  515. 515.
    D’Amato RJ et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91(9):4082–5.PubMedCentralPubMedGoogle Scholar
  516. 516.
    Keifer JA et al. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem. 2001;276(25):22382–7.PubMedGoogle Scholar
  517. 517.
    Laber DA et al. A phase I study of thalidomide, capecitabine and temozolomide in advanced cancer. Cancer Biol Ther. 2007;6(6):840–5.PubMedGoogle Scholar
  518. 518.
    Zidi I et al. TNF-alpha and its inhibitors in cancer. Med Oncol. 2010;27(2):185–98.PubMedGoogle Scholar
  519. 519.
    Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.PubMedGoogle Scholar
  520. 520.
    Giampieri S, Pinner S, Sahai E. Intravital imaging illuminates transforming growth factor β signaling switches during metastasis. Cancer Res. 2010;70(9):3435–9.PubMedCentralPubMedGoogle Scholar
  521. 521.
    Yang L et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+ CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35.PubMedCentralPubMedGoogle Scholar
  522. 522.
    Tseng D, Vasquez-Medrano DA, Brown JM. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br J Cancer. 2011;104(12):1805–9.PubMedCentralPubMedGoogle Scholar
  523. 523.
    Redjal N et al. CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res. 2006;12(22):6765–71.PubMedGoogle Scholar
  524. 524.
    Fricker SP. Physiology and pharmacology of plerixafor. Transfus Med Hemother. 2013;40(4):237–45.PubMedCentralPubMedGoogle Scholar
  525. 525.
    Zeng Z et al. SDF-1 inhibition using Spiegelmer® Nox-A12 as a novel strategy for targeting AML cells within their BM microenvironment. Blood. 2013;122:2454–2454.Google Scholar
  526. 526.
    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.PubMedCentralPubMedGoogle Scholar
  527. 527.
    Yu M et al. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.PubMedCentralPubMedGoogle Scholar
  528. 528.
    Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997;9(5):701–6.PubMedGoogle Scholar
  529. 529.
    Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5(10):816–26.PubMedGoogle Scholar
  530. 530.
    Guadamillas MC, Cerezo A, del Pozo MA. Overcoming anoikis—pathways to anchorage-independent growth in cancer. J Cell Sci. 2011;124(19):3189–97.PubMedGoogle Scholar
  531. 531.
    Smets FN et al. Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes. Mol Genet Metab. 2002;75(4):344–52.PubMedGoogle Scholar
  532. 532.
    Tanaka K et al. Neurotrophic receptor, tropomyosin‐related kinase B as an independent prognostic marker in gastric cancer patients. J Surg Oncol. 2009;99(5):307–10.PubMedGoogle Scholar
  533. 533.
    Douma S et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–9.PubMedGoogle Scholar
  534. 534.
    Kenific CM, Thorburn A, Debnath J. Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol. 2010;22(2):241–5.PubMedCentralPubMedGoogle Scholar
  535. 535.
    Meng S et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10(24):8152–62.PubMedGoogle Scholar
  536. 536.
    Kochetkova M, Kumar S, McColl SR. Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ. 2009;16(5):664–73.PubMedGoogle Scholar
  537. 537.
    Schempp CM et al. V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells. Mol Cancer Ther. 2014;13(4):926–37.PubMedGoogle Scholar
  538. 538.
    Klubo-Gwiezdzinska J et al. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr Relat Cancer. 2012;19(3):447–56.PubMedGoogle Scholar
  539. 539.
    Fidler IJ et al. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 2002;3(1):53–7.PubMedGoogle Scholar
  540. 540.
    Korb T et al. Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion. Exp Cell Res. 2004;299(1):236–47.PubMedGoogle Scholar
  541. 541.
    Avvisato CL et al. Mechanical force modulates global gene expression and β-catenin signaling in colon cancer cells. J Cell Sci. 2007;120(15):2672–82.PubMedGoogle Scholar
  542. 542.
    Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.PubMedGoogle Scholar
  543. 543.
    Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One. 2012;7(12):e50973.PubMedCentralPubMedGoogle Scholar
  544. 544.
    Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9.PubMedGoogle Scholar
  545. 545.
    Pedersen JA, Boschetti F, Swartz MA. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J Biomech. 2007;40(7):1484–92.PubMedGoogle Scholar
  546. 546.
    Burdick MM et al. Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow. Am J Physiol-Cell Physiol. 2003;284(4):C977–87.PubMedGoogle Scholar
  547. 547.
    Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol. 2013;3:44.PubMedCentralPubMedGoogle Scholar
  548. 548.
    Smith HA, Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J Mol Med. 2013;91(4):411–29.PubMedCentralPubMedGoogle Scholar
  549. 549.
    Ruffell B et al. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev. 2010;21(1):3–10.PubMedCentralPubMedGoogle Scholar
  550. 550.
    Garcia‐Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003;195(3):346–55.PubMedGoogle Scholar
  551. 551.
    Luo J-L, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest. 2005;115(10):2625–32.PubMedCentralPubMedGoogle Scholar
  552. 552.
    Kim S et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6.PubMedCentralPubMedGoogle Scholar
  553. 553.
    Bonecchi R et al. Chemokines and chemokine receptors: an overview. Front Biosci (Landmark edition). 2008;14:540–51.Google Scholar
  554. 554.
    Lee BJ et al. Tissue factor is involved in retinoblastoma cell proliferation via both the Akt and extracellular signal-regulated kinase pathways. Oncol Rep. 2011;26(3):665.PubMedGoogle Scholar
  555. 555.
    Liu Y et al. Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res. 2011;71(20):6492–502.PubMedGoogle Scholar
  556. 556.
    Versteeg HH et al. Tissue factor and cancer metastasis: the role of intracellular and extracellular signaling pathways. Mol Med. 2004;10(1–6):6.PubMedCentralPubMedGoogle Scholar
  557. 557.
    Tormoen GW et al. Do circulating tumor cells play a role in coagulation and thrombosis? Front Oncol. 2012;2:115.PubMedCentralPubMedGoogle Scholar
  558. 558.
    Welsh J et al. Tissue factor expression determines tumour cell coagulation kinetics. Int J Lab Hematol. 2012;34(4):396–402.PubMedGoogle Scholar
  559. 559.
    Breij EC et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74(4):1214–26.PubMedGoogle Scholar
  560. 560.
    Belloc C et al. The effect of platelets on invasiveness and protease production of human mammary tumor cells. Int J Cancer. 1995;60(3):413–7.PubMedGoogle Scholar
  561. 561.
    Erpenbeck L et al. Inhibition of platelet GPIbα and promotion of melanoma metastasis. J Invest Dermatol. 2009;130(2):576–86.PubMedGoogle Scholar
  562. 562.
    Shau H, Roth M, Golub S. Regulation of natural killer function by nonlymphoid cells. Nat Immun. 1992;12(4–5):235–49.Google Scholar
  563. 563.
    Kopp H-G, Placke T, Salih HR. Platelet-derived transforming growth factor-β down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775–83.PubMedGoogle Scholar
  564. 564.
    Bambace N, Holmes C. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9(2):237–49.PubMedGoogle Scholar
  565. 565.
    Placke T et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8.PubMedGoogle Scholar
  566. 566.
    Palumbo J.S. Mechanisms linking tumor cell-associated procoagulant function to tumor dissemination. in Seminars in thrombosis and hemostasis. 2008. © Thieme Medical Publishers.Google Scholar
  567. 567.
    Coupland LA, Chong BH, Parish CR. Platelets and p-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 2012;72(18):4662–71.PubMedGoogle Scholar
  568. 568.
    Jurasz P. D. Alonso‐Escolano, and M.W. Radomski, Platelet–cancer interactions: mechanisms and pharmacology of tumour cell‐induced platelet aggregation. Br J Pharmacol. 2004;143(7):819–26.PubMedCentralPubMedGoogle Scholar
  569. 569.
    Toliopoulos IK et al. Resveratrol diminishes platelet aggregation and increases susceptibility of K562 tumor cells to natural killer cells. Indian J Biochem Biophys. 2013;50(1):14–8.PubMedGoogle Scholar
  570. 570.
    Amirkhosravi A et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost. 2003;90(3):549–54.PubMedGoogle Scholar
  571. 571.
    Stoletov K et al. Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci. 2010;123(13):2332–41.PubMedCentralPubMedGoogle Scholar
  572. 572.
    Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal. 2008;6(10):5.Google Scholar
  573. 573.
    Schlüter K et al. Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol. 2006;169(3):1064–73.PubMedCentralPubMedGoogle Scholar
  574. 574.
    Jeon JS et al. In vitro model of tumor cell extravasation. PLoS One. 2013;8(2):e56910.PubMedCentralPubMedGoogle Scholar
  575. 575.
    Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437(7058):497–504.PubMedGoogle Scholar
  576. 576.
    Colmone A et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322(5909):1861–5.PubMedGoogle Scholar
  577. 577.
    Kienast Y et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16(1):116–22.PubMedGoogle Scholar
  578. 578.
    Heyder C et al. Visualization of tumor cell extravasation. Contrib Microbiol. 2006;13:200–8.PubMedGoogle Scholar
  579. 579.
    Kim J-E et al. RGD peptides released from βig-h3, a TGF-β-induced cell-adhesive molecule, mediate apoptosis. Oncogene. 2003;22(13):2045–53.PubMedGoogle Scholar
  580. 580.
    Padua D et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77.PubMedCentralPubMedGoogle Scholar
  581. 581.
    Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res. 2010;16(24):5928–35.PubMedCentralPubMedGoogle Scholar
  582. 582.
    Fidler IJ, Poste G. The “seed and soil” hypothesis revisited. Lancet Oncol. 2008;9(8):808.PubMedGoogle Scholar
  583. 583.
    Fidler IJ et al. The brain microenvironment and cancer metastasis. Mol Cells. 2010;30(2):93–8.PubMedGoogle Scholar
  584. 584.
    Trinh VA, Hwu W-J. Chemoprevention for brain metastases. Curr Oncol Rep. 2012;14(1):63–9.PubMedGoogle Scholar
  585. 585.
    Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997;80(S8):1529–37.PubMedGoogle Scholar
  586. 586.
    Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–69.PubMedCentralPubMedGoogle Scholar
  587. 587.
    Mathot L, Stenninger J. Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci. 2012;103(4):626–31.PubMedGoogle Scholar
  588. 588.
    Langley RR, Fidler IJ. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev. 2007;28(3):297–321.PubMedGoogle Scholar
  589. 589.
    Fidler IJ, Kripke ML. Genomic analysis of primary tumors does not address the prevalence of metastatic cells in the population. Nat Genet. 2003;34(1):23–23.PubMedGoogle Scholar
  590. 590.
    Ruoslahti E. Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans. 2004;32:397–402.PubMedGoogle Scholar
  591. 591.
    Müller A et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.PubMedGoogle Scholar
  592. 592.
    Uhr JW, Pantel K. Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A. 2011;108(30):12396–400.PubMedCentralPubMedGoogle Scholar
  593. 593.
    Naumov GN et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002;62(7):2162–8.PubMedGoogle Scholar
  594. 594.
    Gelao L et al. Tumour dormancy and clinical implications in breast cancer. Ecancermedicalscience. 2013;7:320.PubMedCentralPubMedGoogle Scholar
  595. 595.
    Udagawa T. Tumor dormancy of primary and secondary cancers. Apmis. 2008;116(7‐8):615–28.PubMedGoogle Scholar
  596. 596.
    Almog N. Molecular mechanisms underlying tumor dormancy. Cancer Lett. 2010;294(2):139–46.PubMedGoogle Scholar
  597. 597.
    Baeriswyl V. and Christofori G. The angiogenic switch in carcinogenesis. in Seminars in cancer biology. 2009. Elsevier.Google Scholar
  598. 598.
    Watnick RS et al. RETRACTED: Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003;3(3):219–31.PubMedGoogle Scholar
  599. 599.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):p. 353–364.PubMedGoogle Scholar
  600. 600.
    Hensel JA, Flaig TW, Theodorescu D. Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol. 2012;10(1):41–51.PubMedGoogle Scholar
  601. 601.
    Barkan D et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 2008;68(15):6241–50.PubMedCentralPubMedGoogle Scholar
  602. 602.
    Bragado P. et al., Microenvironments dictating tumor cell dormancy, in Minimal residual disease and circulating tumor cells in breast cancer. 2012, Springer. p. 25-39.Google Scholar
  603. 603.
    Aguirre-Ghiso JA et al. Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12(4):863–79.PubMedCentralPubMedGoogle Scholar
  604. 604.
    Allgayer H, Aguirre‐ghiso JA. The urokinase receptor (u‐PAR)—a link between tumor cell dormancy and minimal residual disease in bone marrow? Apmis. 2008;116(7‐8):602–14.PubMedCentralPubMedGoogle Scholar
  605. 605.
    Kren A et al. Increased tumor cell dissemination and cellular senescence in the absence of β1‐integrin function. EMBO J. 2007;26(12):2832–42.PubMedCentralPubMedGoogle Scholar
  606. 606.
    Teng MW et al. Immune-mediated dormancy: an equilibrium with cancer. J Leukocyte Biol. 2008;84(4):988–93.PubMedGoogle Scholar
  607. 607.
    Moserle L, Amadori A, Indraccolo S. The angiogenic switch: implications in the regulation of tumor dormancy. Curr Mol Med. 2009;9(8):935–41.PubMedGoogle Scholar
  608. 608.
    Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.PubMedGoogle Scholar
  609. 609.
    Chambers AF. Influence of diet on metastasis and tumor dormancy. Clin Exp Metastasis. 2009;26(1):61–6.PubMedGoogle Scholar
  610. 610.
    Gewirtz DA. Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy. 2009;5(8):1232–4.PubMedGoogle Scholar
  611. 611.
    Troyanovsky B et al. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 2001;152(6):1247–54.PubMedCentralPubMedGoogle Scholar
  612. 612.
    Zhang X et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun. 2014;5:3295.PubMedCentralPubMedGoogle Scholar
  613. 613.
    El Touny LH et al. Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J Clin Invest. 2014;124(1):156–68.PubMedCentralPubMedGoogle Scholar
  614. 614.
    Perren TJ et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–96.PubMedGoogle Scholar
  615. 615.
    O’Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315–28.PubMedGoogle Scholar
  616. 616.
    O’Reilly MS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.PubMedGoogle Scholar
  617. 617.
    Folkman J. Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res. 2006;312(5):594–607.PubMedGoogle Scholar
  618. 618.
    Volpert OV, Lawler J, Bouck NP. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc Natl Acad Sci U S A. 1998;95(11):6343–8.PubMedCentralPubMedGoogle Scholar
  619. 619.
    Hahnfeldt P et al. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 1999;59(19):4770–5.PubMedGoogle Scholar
  620. 620.
    Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–86.PubMedGoogle Scholar
  621. 621.
    Folkman J. Angiogenesis inhibitors generated by tumors. Mol Med. 1995;1(2):120–2.PubMedCentralPubMedGoogle Scholar
  622. 622.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.PubMedGoogle Scholar
  623. 623.
    Benzekry S, Gandolfi A, Hahnfeldt P. Global dormancy of metastases due to systemic inhibition of angiogenesis. PLoS One. 2014;9(1):e84249.PubMedCentralPubMedGoogle Scholar
  624. 624.
    Livant DL et al. Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res. 2000;60(2):309–20.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ali Mohammad Alizadeh
    • 1
  • Sadaf Shiri
    • 1
  • Sadaf Farsinejad
    • 1
  1. 1.Cancer Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations