Tumor Biology

, Volume 35, Issue 9, pp 8471–8482

From conventional chemotherapy to targeted therapy: use of monoclonal antibodies (moAbs) in gastrointestinal (GI) tumors

  • Federica Zoratto
  • L. Rossi
  • E. Giordani
  • M. Strudel
  • A. Papa
  • S. Tomao
Review
  • 137 Downloads

Abstract

In recent years, significant progress has been made in the diagnosis and treatment of gastrointestinal cancers. Researches and clinicians however are still faced with challenges, not the least is the detection and management of tumors with varied gene mutation status. Clarification of the molecular pathology of gastrointestinal cancers may improve treatment options as well as quality of life and the long-term survival of this patient class. Therefore, molecular-targeted therapies have emerged as clinically useful drugs for gastrointestinal cancers cure, and predictive biomarkers have been heralded as the way to develop the right drug for the right patient. Moving from such appealing molecular background, we wrote an overview of the main targeted therapies, with particular interest to monoclonal antibodies that have already been approved in clinical practice or are being tested in gastrointestinal cancers treatment.

Keywords

Gastrointestinal cancers Monoclonal antibodies Molecular biomarkers Personalized treatment strategy 

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Marcus W, Caca W, Caca K. Molecularly targeted therapy for gastrointestinal cancer. Curr Cancer Drug Targets. 2013;5(3):171–23.Google Scholar
  3. 3.
    Chatrala R, Thanavala Y, Iyer R. Targeted therapy in gastrointestinal malignancy. J Carcinog. 2014;13:4.CrossRefGoogle Scholar
  4. 4.
    Bronte G, Cicero G, Cusenza S, et al. Monoclonal antibodies in gastrointestinal cancers. Expert Opin Biol Ther. 2013;13(6):889–900.CrossRefPubMedGoogle Scholar
  5. 5.
    Riaal TS. Introduction: personalized medicine in gastrointestinal cancer. J Gastrointest Surg. 2012;16:1639–40.CrossRefGoogle Scholar
  6. 6.
    Chao C. Overview of personalized medicine in GI cancers. J Gastrointest Surg. 2012;16:1641–4.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Ferrara N, Davis Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:549–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Carmeliat P, Jain RK. Angiogenesis in cancer and other disease. Nat Med. 2000;407:249–57.CrossRefGoogle Scholar
  11. 11.
    Tischer E, Mitchell R, Hartman T, Silva MDG, Fiddes JC, et al. The human gene for vascular endothelial growth factor. Multiple proteins are encoded through alternative axon splicing. J Biol Chem. 1991;266:11947–54.PubMedGoogle Scholar
  12. 12.
    Shibuya MJ, Yamaguchi S, Yamane A, Ikeda T, Toyjo A, Matsushime H, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene. 1990;5:519–24.PubMedGoogle Scholar
  13. 13.
    Matthews W, Jordan CT, Gavin M, Jenkis NA, Copeland NG, Lemischka IR. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci U S A. 1991;88:9026–30.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Terman BL, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene. 1991;6:1677–83.PubMedGoogle Scholar
  15. 15.
    Ferrara N, Gerber HP, Le C. The biology of VEGF and its receptors. J Nat Med. 2003;9:669–76.CrossRefGoogle Scholar
  16. 16.
    Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases; balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1:149–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels and appearance of basement membrane ghosts. Am J Pathol. 2004;165:35–52.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Willett CG, Boucher Y, Tomaso ED, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Patel N, Sun L, Moshinsky D, Chen H, Leahy KM, Le P, et al. A selective and oral small molecule inhibitor of vascular epithelial growth factor receptor (VEGFR)-2 and VEGFR-1 inhibits neovascularization and vascular permeability. J Pharmacol Exp Ther. 2003;306:838–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Tong RT, Boucher Y, Kozin SV, Winkler F, Hieklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor-2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64:3731–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Wildiers H, Guetens G, Boeck GD, Verbeken E, Landuyt B, De Bruijin EA, et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer. 2003;88:1979–86.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Giantonio BJ, Catalano PJ, Merepol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25:1539–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Diaz-Rubio E, Gomez Espana A, Massuti B, et al. First-line XELOX plus bevacizumab followed by XELOX plus bevacizumab or single-agent bevacizumab as maintenance therapy in patients with metastatic colorectal cancer: the phase III MACRO TTD study. Oncologist. 2012;17(1):15–25.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Koopman M, Simkens LH, Ten Tije AJ, et al. Maintenance treatment with capecitabine and bevacizumab versus observation after induction treatment with chemotherapy and bevacizumab in metastatic colorectal cancer (mCRC): the phase III CAIRO3 study of the Dutch Colorectal Cancer Group (DCCG). J Clin Oncol 2013; 31 suppl. abstr 3502; ASCO annual meeting 2013, oral presentation.Google Scholar
  28. 28.
    Koeberle D, Betticher DC, Von Moos R, et al. Bevacizumab continuation versus no continuation after first-line chemo-bevacizumab therapy in patients with metastatic colorectal cancer: a randomized phase III noninferiority trial (SAKK 41/06). J Clin Oncol 2013; 31 suppl. Abstr 3503; ASCO annual meeting 2013, oral presentation.Google Scholar
  29. 29.
    Cao Y, Tan A, Gao F, et al. A meta-analysis of randomized controlled trial comparing chemotherapy plus bevacizumab with chemotherapy alone in metastatic colorectal cancer. Int J Color Dis. 2009;24:677–85.CrossRefGoogle Scholar
  30. 30.
    Hurwitz II, Tebutt NC, Kabbinavar F, et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist. 2013;9:1004–12.CrossRefGoogle Scholar
  31. 31.
    Loupakis F, Bria E, Vaccaro V, et al. Magnitude of benefit of the addition of bevacizumab to first-line chemotherapy for metastatic colorectal cancer: meta-analysis of randomized clinical trials. J Exp Clin Cancer Res. 2010;29:58.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomized phase III trial. Lancet Oncol. 2013;14:29–37.CrossRefPubMedGoogle Scholar
  33. 33.
    Masi G, Loupakis F, Salvatore L, et al. Second-line chemotherapy (CT) with or without bevacizumab (BV) in metastatic colorectal cancer (mCRC) patients, who progressed to a first-line treatment containing BV: update results of the phase III BEBYP trial by the Gruppo Oncologico Nord Ovest (GONO); ASCO meeting abstract 2013: 31:3615.Google Scholar
  34. 34.
    Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan plus infusional, bolus or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C study. J Clin Oncol. 2007;25(30):4779–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Shah MA, Jhawer M, Ilson DH, et al. Phase II study of modified docetaxel, cisplatin, and fluorouracil with bevacizumab in patients with metastatic gastroesophageal adenocarcinoma. J Clin Oncol. 2011;29(7):868–74.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Ohtsu A, Shah MA, Van Cutsem E, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer. A randomized double-blind placebo controlled phase III study; JCO 2011; 29:3968-3976.Google Scholar
  37. 37.
    Fang P, Hu JH, Cheng ZG, Liu ZF, Wang JL, Jiao SC. Efficacy and safety of bevacizumab for the treatment of advanced hepatocellular carcinoma: a systematic review of phase II trials. PLoS One. 2012;7:e49717.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Amit L, Ben-Aharon I, Vidal L, Leibovici L, Stemmer S. The impact of bevacizumab (Avastin) on survival in metastatic solid tumors—a meta-analysis and systematic review. PLoS One. 2012;8(1), E51780.CrossRefGoogle Scholar
  39. 39.
    Van Cutsem E, Vervenne WL, Bennouna J, Humblet Y, Gill S, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. JCO. 2009;27(13):2231–7.CrossRefGoogle Scholar
  40. 40.
    Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schraq D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the cancer and leukemia group B (CALGB 80303). JCO. 2010;28(22):3617–22.CrossRefGoogle Scholar
  41. 41.
    Van Cutsem E, Twelves C, Cassidy J, et al. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol. 2001;19:4097–106.PubMedGoogle Scholar
  42. 42.
    Lee JJ, Chu E. Sequencing of antiangiogenic agents in the treatment of metastatic colorectal cancer. Clin Colorectal Cancer. 2014. doi:10.1016/j.clcc.2014.02.001.Google Scholar
  43. 43.
    Rougier P, Riess H, Manges R, et al. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. Eur J Cancer. 2013;49(12):2633–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Spratlin JL, Cohen RB, Eadens M, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28:780–7.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Fuchs CS, Tomasek J, Yang CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Hansjochen W, van Cutsem E, Oh SC, et al. Ramucirumab in combination with paclitaxel improves overall survival in second line treatment for metastatic gastric cancer. Presented at: The 2014 GI Cancers Symposium; January 16-18, 2013; San Francisco, CA. Abstract LBA7.Google Scholar
  47. 47.
    Zhu AX, Finn RS, Mulcahy MF, et al. A phase II study of ramucirumab as first-line monotherapy in patients (pts) with advanced hepatocellular carcinoma (HCC) [abstract]. J Clin Oncol. 2010;28(15s):4083.Google Scholar
  48. 48.
    www.clinicaltrials.gov. Eli Lilly and Company Identifier: NCT01140347. Accessed March 2014.
  49. 49.
    www.clinicaltrials.gov. Eli Lilly and Company. Identifier: NCT01183780. Accessed 21 April 2014.
  50. 50.
    www.clinicaltrials.gov. Eastern Cooperative Oncology Group. Identifier: NCT01079780. Accessed 18 July 2012.
  51. 51.
    www.clinicaltrials.gov. Eli Lilly and Company. Identifier: NCT01111604. Accessed 28 April 2014.
  52. 52.
    Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366(1):2–16.CrossRefPubMedGoogle Scholar
  53. 53.
    Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357:2040–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Petrelli F, Borgonovo K, Barni S. The predictive role of skin rash with cetuximab and panitumumab in colorectal cancer patients: a systematic review and meta-analysis of published trials. Target Oncol. 2013;8(3):817–23.CrossRefGoogle Scholar
  55. 55.
    Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Van Cutsem E, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Douillard JY, Oliner SK, Savatore S, et al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–39.CrossRefPubMedGoogle Scholar
  58. 58.
    Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.CrossRefPubMedGoogle Scholar
  59. 59.
    Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27:663–71.CrossRefPubMedGoogle Scholar
  60. 60.
    Bokemeyer C, Bondarenko I, Hartmann JT, et al. Biomarkers predictive for outcome in patients with metastatic colorectal cancer (mCRC) treated with first-line FOLFOX4 plus or minus cetuximab: updated data from the OPUS study. J Clin Oncol. 2010: 428 abstract. Google Scholar
  61. 61.
    Maughan TS, Adams RA, Smith CG, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377:2103–2114.170.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Tveit KM, Guren T, Glimelius B, et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol. 2012;30:1755–62.CrossRefPubMedGoogle Scholar
  63. 63.
    Folprecht G, Gruenberger T, Bechstein WO, et al. Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol. 2010;11:38–47.CrossRefPubMedGoogle Scholar
  64. 64.
    Sobrero AF, Maurel J, Fehrenbacher L, et al. EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:2311–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.CrossRefPubMedGoogle Scholar
  66. 66.
    Burtness B, Hollis D, Niedzwiecki D, et al. CALGB 80403/ECOG 1206: a randomized phase II study of three standard chemotherapy regimens (ECF, IC, FOLFOX) plus cetuximab in metastatic esophageal and GE junction cancer. J Clin Oncol 2010;28(15s), abstr 4006.Google Scholar
  67. 67.
    Pinto C, Di FF, Siena S, et al. Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol. 2007;18(3):510–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Yeh K, Hsu C, Lin C, et al. Phase II study of cetuximab plus weekly cisplatin and 24-hour infusion of high-dose 5-fluorouracil and leucovorin for the first-line treatment of advanced gastric cancer. J Clin Oncol. 2009;20(27):15S.Google Scholar
  69. 69.
    Lordick F, Kang YK, Chung HC, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14(6):490–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhu AX, Stuart K, Blaszkowsky LS, et al. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer. 2007;110:581–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Asnacios A, Fartoux L, Romano O, et al. Gemcitabine plus oxaliplatin combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study. Cancer. 2008;112:2733–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Sanoff HK, Bernard S, Goldberg RM, et al. Phase II study of capecitabine, oxaliplatin, and cetuximab for advanced hepatocellular carcinoma. Gastrointest Cancer Res. 2011;4(3):78–83.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25:1658–64.CrossRefPubMedGoogle Scholar
  74. 74.
    Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–705.CrossRefPubMedGoogle Scholar
  75. 75.
    Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–13.CrossRefPubMedGoogle Scholar
  76. 76.
    Seymour MT, Brown SR, Richman S, et al. Addition of panitumumab to irinotecan: results of PICCOLO, a randomized controlled trial in advanced colorectal cancer (aCRC). ASCO 2011; J Clin Oncol. 2011; 29: (3523 abstract).Google Scholar
  77. 77.
    Marino A, Caliolo C, Sponziello F, et al. Panitumumab after progression on cetuximab in patients with KRAS wild-TYPE (WT) metastatic colorectal cancer (MCRC): a single institution experience. ASCO 2013. J Clin Oncol 2013; 31: (suppl; abstr e14605).Google Scholar
  78. 78.
    Waddell TS, Chau I, Barbachano Y, et al. A randomized multicenter trial of epirubicin, oxaliplatin, and capecitabine (EOC) plus panitumumab in advanced esophagogastric cancer (REAL3). ASCO Meet Abstr 2012;30(Suppl. (18):LBA4000.Google Scholar
  79. 79.
    Jensen LH, Lindebjerg J, Ploen J, et al. Phase II marker-driven trial of panitumumab and chemotherapy in KRAS wild-type biliary tract cancer. Ann Oncol. 2012;23(9):2341–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Fornaro L, Lucchesi M, Caparello C, et al. Anti-HER agents in gastric cancer: from bench to bedside. Nat Rev Gastroenterol Hepatol. 2011;8(7):369–83.CrossRefPubMedGoogle Scholar
  81. 81.
    Ross JS, McKenna BJ. The HER-2/neu oncogene in tumors of the gastrointestinal tract. Cancer Investig. 2001;19(5):554–68.CrossRefGoogle Scholar
  82. 82.
    Chan DS, Twine CP, Lewis WG. Systematic review and meta-analysis of the influence of HER2 expression and amplification in operable oesophageal cancer. J Gastrointest Surg. 2012;16(10):1821–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.CrossRefPubMedGoogle Scholar
  84. 84.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.CrossRefPubMedGoogle Scholar
  85. 85.
    Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomized controlled trial. Lancet. 2010;376:687–97.CrossRefPubMedGoogle Scholar
  86. 86.
    Almhanna K, Meredith K, Hoffe SE, et al. Targeting the human epidermal growth factor receptor 2 in esophageal cancer. Cancer Control. 2013;20:111–6.PubMedGoogle Scholar
  87. 87.
    Nazemalhosseini ME, Kuppen PJ. HER2 and immunotherapy using monoclonal antibodies in colorectal cancer. Cancer. 2013;5(12):1267–9.Google Scholar
  88. 88.
    Ma NY, Cai XW, Fu XL, Li Y, Zhou XY, Wu XH, et al. Safety and efficacy of nimotuzumab in combination with radiotherapy for patients with squamous cell carcinoma of the esophagus. Int J Clin Oncol. 2014;19(2):297–302.CrossRefPubMedGoogle Scholar
  89. 89.
    Liang J, E M, Wu G, et al. Nimotuzumab combined with radiotherapy for esophageal cancer: preliminary study of a Phase II clinical trial. Onco Targets Ther 2013; 6:1589-1596.Google Scholar
  90. 90.
    Strumberg D, Schultheis B, Scheulen ME, Hilger RA, Krauss J, Marschner N, et al. Phase II study of nimotuzumab, a humanized monoclonal anti-epidermal growth factor receptor (EGFR) antibody, in patients with locally advanced or metastatic pancreatic cancer. Investig New Drugs. 2012;30:1138–43.CrossRefGoogle Scholar
  91. 91.
    Gold DV, Goggins M, Modrak DE, Newsome G, Liu M, Shi C, et al. Detection of early-stage pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2010;19:2786–94.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Karacay H, Sharkey RM, Gold DV, et al. Pretargeted radioimmunotherapy of pancreatic cancer xenografts: TF10-90Y-IMP-288 alone and combined with gemcitabine. J Nucl Med. 2009;50(12):2008–16.CrossRefPubMedGoogle Scholar
  93. 93.
    Ocean AJ, Pennington KL, Guarino MJ, et al. Fractionated radioimmunotherapy with (90) Y-clivatuzumab tetraxetan and low-dose gemcitabine is active in advanced pancreatic cancer: a phase 1 trial. Cancer. 2012;15(118):5497–506.CrossRefGoogle Scholar
  94. 94.
    Cohn AL, Tabernero J, Maurel J, et al. A randomized, placebo-controlled phase 2 study of ganitumab or conatumumab in combination with FOLFIRI for second-line treatment of mutant KRAS metastatic colorectal cancer. Ann Oncol. 2013;24(7):1777–85.CrossRefPubMedGoogle Scholar
  95. 95.
    Fuchs CS, Fakih M, Schwartzberg L, et al. TRAIL receptor agonist conatumumab with modified FOLFOX6 plus bevacizumab for first-line treatment of metastatic colorectal cancer: a randomized phase 1b/2 trial. Cancer. 2013;119(24):4290–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Kindler HL, Richards DA, Garbo LE, Garon EB, Stephenson Jr JJ, Rocha-Lima CM, et al. A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab (AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Ann Oncol. 2012;23:2834–42.CrossRefPubMedGoogle Scholar
  97. 97.
    Strosberg JR, Chan JA, Ryan DP, Meyerhardt JA, Fuchs CS, Abrams T, et al. A multi-institutional, phase II open-label study of ganitumab (AMG 479) in advanced carcinoid and pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2013;20:383–90.PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Rao S, Starling N, Cunningham D, et al. Matuzumab plus epirubicin, cisplatin and capecitabine (ECX) compared with epirubicin, cisplatin and capecitabine alone as first-line treatment in patients with advanced oesophago-gastric cancer: a randomised, multicentre open-label phase II study. Ann Oncol. 2010;21(11):2213–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Federica Zoratto
    • 1
  • L. Rossi
    • 2
  • E. Giordani
    • 2
  • M. Strudel
    • 2
  • A. Papa
    • 2
  • S. Tomao
    • 2
  1. 1.Oncology Unit 2Azienda Ospedaliera-Universitaria Pisana, Ospedale Santa ChiaraPisaItaly
  2. 2.Oncology Unit, Department of Medico-Surgical Sciences and Biotechnologies“Sapienza” University of Rome, ICOTLatinaItaly

Personalised recommendations