Tumor Biology

, Volume 35, Issue 11, pp 11013–11019 | Cite as

RETRACTED ARTICLE: MicroRNA-92 promotes gastric cancer cell proliferation and invasion through targeting FXR

Research Article


MicroRNAs (miRNAs), a class of small noncoding RNAs, play critical roles in human carcinogenesis through downregulation of various target genes. In the present study, we found that miR-92 is upregulated in gastric cancer tissues compared with adjacent normal tissues. Interestingly, miR-92 expression is significantly associated with clinical characteristics of patients. Gain or loss-of-function in vitro experiments further show that miR-92 mimics significantly promoted, while its antisense oligos inhibited gastric cancer cell proliferation and invasion. Moreover, luciferase reporter assays and western blot indicated that farnesoid X receptor (FXR), is a direct target of miR-92. Therefore, our data suggest that upregulation of miR-92 may represent an important mechanism for the development of gastric cancer.


miR-92 Farnesoid X receptor Gastric cancer Invasion 


Conflict of interest


Supplementary material

13277_2014_2342_Fig7_ESM.gif (5 kb)
Supplementary Figure 1

a Expression levels of miR-92 after transfection of miR-92 mimics or negative controls (NC) in NCI-N87 cells for 24 h. b, c The proliferative potential (BrdU) (b) and invasion assays (c) were determined in NCI-N87 cells transfected with miR-92 mimics or negative controls (NC) for 24 h. (d) The cell cycle phase of NCI-N87 cells transfected with miR-92 mimics or negative controls (NC) were analyzed by flow cytometry. (GIF 4 kb)

13277_2014_2342_MOESM1_ESM.tif (420 kb)
High resolution image (TIFF 420 kb)
13277_2014_2342_Fig8_ESM.gif (3 kb)
Supplementary Figure 2

Representative FXR protein levels in human gastric cancer tissues and adjacent normal tissues from three patients. (GIF 2 kb)

13277_2014_2342_MOESM2_ESM.tif (198 kb)
High resolution image (TIFF 198 kb)
13277_2014_2342_Fig9_ESM.gif (3 kb)
Supplementary Figure 3

a, b Relative mRNA (a) and protein (b) levels of C-myc and cyclin D1 were determined by real-time PCR and western blot in AGS cells after transfection of miR-92 mimics or negative controls (NC). (GIF 3 kb)

13277_2014_2342_MOESM3_ESM.tif (238 kb)
High resolution image (TIFF 237 kb)
13277_2014_2342_Fig10_ESM.gif (3 kb)
Supplementary Figure 4

a, b Relative mRNA (a) and protein (b) levels of C-myc and cyclin D1 were determined by real-time PCR and western blot in AGS cells after transfection of miR-92 antisense or negative controls (NC). (GIF 2 kb)

13277_2014_2342_MOESM4_ESM.tif (220 kb)
High resolution image (TIFF 220 kb)


  1. 1.
    Lin Y, Ueda J, Kikuchi S, et al. Comparative epidemiology of gastric cancer between Japan and China. World J Gastroenterol. 2011;17(39):4421–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wadhwa R, Song S, Lee JS, et al. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10(11):643–55.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sun K, Lai EC. Adult-specific functions of animal microRNAs. Nat Rev Genet. 2013;14(8):535–48.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88.CrossRefPubMedGoogle Scholar
  5. 5.
    Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10(9):542–52.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13(4):239–50.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12(11):847–65.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang BG, Li JF, Yu BQ, et al. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep. 2012;27(4):1019–26.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Li F, Liu B, Gao Y, et al. Upregulation of microRNA-107 induces proliferation in human gastric cancer cells by targeting the transcription factor FOXO1. FEBS Lett. 2014;588(4):538–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Scapoli L, Palmieri A, Lo Muzio L, et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol. 2010;23(4):1229–34.CrossRefPubMedGoogle Scholar
  13. 13.
    Al-Nakhle H, Burns PA, Cummings M, et al. Estrogen receptor {beta} 1 expression is regulated by miR-92 in breast cancer. Cancer Res. 2010;70(11):4778–84.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tsuchida A, Ohno S, Wu W, et al. miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci. 2011;102(12):2264–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Yu Y, Zhang Y, Zhang S. MicroRNA-92 regulates cervical tumorigenesis and its expression is upregulated by human papillomavirus-16 E6 in cervical cancer cells. Oncol Lett. 2013;6(2):468–74.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Ohno T, Shirakami Y, Shimizu M, et al. Synergistic growth inhibition of human hepatocellular carcinoma cells by acyclic retinoid and GW4064, a farnesoid X receptor ligand. Cancer Lett. 2012;323(2):215–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Haug BH, Henriksen JR, Buechner J, et al. MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma. Carcinogenesis. 2011;32(7):1005–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Urdinguio RG, Fernandez AF, Lopez-Nieva P, et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics. 2010;5(7):656–63.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–18.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lu Y, Ma Z, Zhang Z, et al. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut. 2014;63(1):170–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang F, Huang X, Yi T, et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 2007;67(3):863–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Modica S, Murzilli S, Salvatore L, et al. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res. 2008;68(23):9589–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Swales KE, Korbonits M, Carpenter R, et al. The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res. 2006;66(20):10120–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Lian F, Xing X, Yuan G, et al. Farnesoid X receptor protects human and murine gastric epithelial cells against inflammation-induced damage. Biochem J. 2011;438(2):315–23.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of GastroenterologySecond Hospital of Shaoxing CityShaoxingChina
  2. 2.Department of GastroenterologyChina–Japan Friendship HospitalBeijingChina

Personalised recommendations