Advertisement

Tumor Biology

, Volume 35, Issue 10, pp 10287–10293 | Cite as

RETRACTED ARTICLE: MicroRNA-142-3p, a novel target of tumor suppressor menin, inhibits osteosarcoma cell proliferation by down-regulation of FASN

  • Yao-Qi Yang
  • Jin Qi
  • Jian-Qiang Xu
  • Ping Hao
Research Article

Abstract

Menin, encoded by MEN1 gene, has been viewed as a tumor suppressor in several types of tumors, such as insulinoma, parathyroid tumor, and adrenocortical and lung carcinoma. However, its expression and molecular regulation mechanism in osteosarcoma has not been elucidated. Here, our results show menin expression is significantly down-regulated in osteosarcoma tissues, compared with adjacent normal tissues. Besides, we report that MicroRNA-142-3p as a novel target of menin. Up-regulation of MicroRNA-142-3p by menin overexpression inhibits cell proliferation in U2OS and MG63 cells. At the molecular level, MicroRNA-142-3p inhibits the protein expression of FASN through binding to its 3′-untranslated region. Therefore, we elucidate a novel regulation pathway in osteosarcoma cells and suggest a potential therapeutic approach for the tumor therapy.

Keywords

Osteosarcoma Menin MicroRNA MicroRNA-142-3p FASN 

Notes

Acknowledgements

This work was supported by the Shanghai Jiao Tong University School of Medicine Project in China, No.12XJ10064

Conflict of interest

None

Supplementary material

13277_2014_2316_Fig6_ESM.gif (5 kb)
Supplementary Figure 1

Menin inhibition on the cell proliferation in MG63 cells (a, b). mRNA (a) and protein (b) levels of menin in MG63 cells transfected with siRNA oligos targeting menin or negative control (NC) for 24 and 36 h, respectively. (ce) The cell growth (c), viability (e), and proliferative potential (f) were determined in U2OS cells after transfection of menin siRNA or negative control (NC). (GIF 4 kb)

13277_2014_2316_MOESM1_ESM.tif (443 kb)
High resolution image (TIFF 443 kb)
13277_2014_2316_Fig7_ESM.gif (2 kb)
Supplementary Figure 2

Menin regulates p18 and p27 expression in osteosarcoma cells (ab) mRNA levels of p18 and p27 in U2OS and MG63 cells transfected with menin expression plasmids or empty vector (EV) for 24 h. (GIF 2 kb)

13277_2014_2316_MOESM2_ESM.tif (223 kb)
High resolution image (TIFF 222 kb)

References

  1. 1.
    Matkar S, Thiel A, Hua X. Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci. 2013;38(8):394–402.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yang YJ, Song TY, Park J, et al. Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis. 2013;4:e583.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shi K, Parekh VI, Roy S, et al. The embryonic transcription factor Hlxb9 is a menin interacting partner that controls pancreatic β-cell proliferation and the expression of insulin regulators. Endocr Relat Cancer. 2013;20(1):111–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Alvelos MI, Vinagre J, Fonseca E, et al. MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism. Eur J Endocrinol. 2012;168(2):119–28.CrossRefPubMedGoogle Scholar
  5. 5.
    Gang D, Hongwei H, Hedai L, et al. The tumor suppressor protein menin inhibits NF-κB-mediated transactivation through recruitment of Sirt1 in hepatocellular carcinoma. Mol Biol Rep. 2013;40(3):2461–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Wu Y, Feng ZJ, Gao SB, et al. Interplay between menin and K-Ras in regulating lung adenocarcinoma. J Biol Chem. 2012;287(47):40003–11.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Horiguchi K, Yamada M, Satoh T, et al. Transcriptional activation of the mixed lineage leukemia-p27Kip1 pathway by a somatostatin analogue. Clin Cancer Res. 2009;15(8):2620–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Veschi S, Lattanzio R, Aceto GM, et al. Alterations of MEN1 and E-cadherin/β-catenin complex in sporadic pulmonary carcinoids. Int J Oncol. 2012;41(4):1221–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Gurung B, Feng Z, Iwamoto DV, et al. Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res. 2013;73(8):2650–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xu B, Li SH, Zheng R, et al. Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc Natl Acad Sci U S A. 2013;110(43):17480–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gill J, Ahluwalia MK, Geller D, et al. New targets and approaches in osteosarcoma. Pharmacol Ther. 2013;137(1):89–99.CrossRefPubMedGoogle Scholar
  12. 12.
    Han G, Wang Y, Bi W. C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway. Oncol Res. 2012;20(4):149–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang P, Dong L, Yan K, et al. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF. Oncol Rep. 2013;30(4):1753–61.PubMedGoogle Scholar
  14. 14.
    Gurung B, Muhammad AB, Hua X. Menin is required for optimal processing of the microRNA let-7a. J Biol Chem. 2014;289(14):9902–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.PubMedGoogle Scholar
  16. 16.
    Sun K, Lai EC. Adult-specific functions of animal microRNAs. Nat Rev Genet. 2013;14(8):535–48.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Kasinski AL, Slack FJ. Epigenetics and genetics MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bidard FC, Pierga JY, Soria JC, et al. Translating metastasis-related biomarkers to the clinic–progress and pitfalls. Nat Rev Clin Oncol. 2013;10(3):169–79.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu L, Cai C, Wang X, et al. MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett. 2011;585(9):1322–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Shen WW, Zeng Z, Zhu WX, et al. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl). 2013;91(8):989–1000.CrossRefGoogle Scholar
  22. 22.
    Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.CrossRefPubMedGoogle Scholar
  23. 23.
    Zaytseva YY, Rychahou PG, Gulhati P, et al. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72(6):1504–17.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu ZL, Wang G, Peng AF, et al. Fatty acid synthase expression in osteosarcoma and its correlation with pulmonary metastasis. Oncol Lett. 2012;4(5):878–82.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu ZL, Zhou Y, Luo QF, et al. Inhibition of fatty acid synthase supresses osteosarcoma cell invasion and migration. Indian J Pathol Microbiol. 2012;55(2):163–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Orthopaedics, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Institute of Traumatology and Orthopaedics, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations