Advertisement

Tumor Biology

, Volume 35, Issue 9, pp 8395–8405 | Cite as

microRNAs in cancer stem cells: current status and future directions

  • Ravindresh Chhabra
  • Neeru Saini
Review

Abstract

The presence of stem-like cells in cancer, popularly known as cancer stem cells, have been known for a long time but it was the research of Bonnet and Dick in leukemia which got cancer researchers interested in them. Over the past few years, a lot of research has gone into the characterization of cancer stem cells (CSCs) from different tumors. CSCs have been elucidated in almost all solid tumors. The growth of this field has not been without controversies as many researchers considered CSCs to be a transient population of little consequence. The field has nevertheless progressed providing us not only a better understanding of cancer and its related facets like proliferation, EMT, and metastasis but also generating a hope for new generation therapeutics with CSCs as their targets. This search for drugs which target CSCs has also focused on miRNAs. miRNAs are small non-coding regulatory RNA molecules capable of fine-tuning the gene expression. The miRNA profile of CSCs is remarkably different from non-stem cancer cells and many miRNAs have also been shown to regulate self-renewal and differentiation properties of CSCs. The differential miRNA profile in CSCs make them probable biomarkers for the prognosis of cancer and their specificity in targeting the properties of CSCs make them potential targets for therapeutic intervention. This review critically analyzes the advancement of the miRNA research in CSC context and also explores the prospect of miRNA therapies against CSCs.

Keywords

CSC miRNA Self-renewal Cancer stem cells MiRNA therapeutics 

Notes

Acknowledgements

This work was supported by the INSPIRE Faculty fellowship awarded to RC (Code- IFA-LSBM-18) by Department of Science and Technology, India.

Conflict of interest

None.

References

  1. 1.
    Hanahan D. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Pang R, Law WL, Chu ACY, Poon JT, Lam CSC, Chow AKM, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6:603–15.CrossRefPubMedGoogle Scholar
  3. 3.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  5. 5.
    Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–99.CrossRefPubMedGoogle Scholar
  6. 6.
    Dumortier O, Hinault C, Van Obberghen E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18:312–24.CrossRefPubMedGoogle Scholar
  7. 7.
    Hwang H-W, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Chivukula RR, Mendell JT. Circular reasoning: microRNAs and cell-cycle control. Trends Biochem Sci. 2008;33:474–81.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279:52361–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao C, Sun G, Li S, Lang M-F, Yang S, Li W, et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A. 2010;107:1876–81.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  12. 12.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102:13944–9.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ofir M, Hacohen D, Ginsberg D. miR-15 and miR-16 Are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res. 2011;9:440–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CEA, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113:6411–8.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35:215–7. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  17. 17.
    Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19:489–501. Cold Spring Harbor Laboratory Press.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube. Genes Dev. 2007;21:531–6. Cold Spring Harbor Laboratory Press.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, et al. Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008;36:2690–9. Oxford University Press.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S. REST maintains self-renewal and pluripotency of embryonic stem cells. Nature. 2008;453:223–7. Nature Publishing Group.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on. Cancer Res. 2006;66:9339–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146:633–44. Elsevier Inc.CrossRefPubMedGoogle Scholar
  23. 23.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  24. 24.
    Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15:1010–2. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang G, Quan Y, Wang W, Fu Q, Wu J, Mei T, et al. Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br J Cancer. 2012;106:1512–9.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9. Nature Publishing Group.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.CrossRefPubMedGoogle Scholar
  28. 28.
    Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One. 2012;7:e30771.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8. The National Academy of Sciences.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23. Elsevier.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 2012;8:e1002751.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007;21:3238–43. Cold Spring Harbor Laboratory Press.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013;73:1434–44.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  36. 36.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  37. 37.
    Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158–63. National Academy of Sciences.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009;69:3382–9.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065–74. Nature Publishing Group.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer BioMed Central. 2010;9:96.CrossRefGoogle Scholar
  41. 41.
    Nicolas FE, Pais H, Schwach F, Lindow M, Kauppinen S, Moulton V, et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA. 2008;14:2513–20.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Yu Y, Kanwar SS, Patel BB, Oh P-S, Nautiyal J, Sarkar FH, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis. 2012;33:68–76.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Yu X-F, Zou J, Bao Z-J, Dong J. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol. 2011;17:4711–7.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Xu XT, Xu Q, Tong JL, Zhu MM, Nie F, Chen X, et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer. 2012;106:1320–30.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells Dayt Ohio. 2011;29:1661–71.CrossRefGoogle Scholar
  46. 46.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res AACR. 2003;63:5821–8.Google Scholar
  47. 47.
    Singh SK, Hawkins C, Phylogenies TF, Compare EP. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMedGoogle Scholar
  48. 48.
    Mao X-G, Zhang X, Xue X-Y, Guo G, Wang P, Zhang W, et al. Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl Oncol. 2009;2:247–57.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, et al. MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun. 2008;376:86–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One. 2009;4:e4998.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle. 2010;9:1031–6.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009;12:399–408. Nature Publishing Group.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37:620–32. Elsevier Ltd.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC med. 2008;6:14. BioMed Central Ltd.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Li KKW, Pang JC, Ching AK, Wong CK, Kong X, Wang Y, et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol. 2009;40:1234–43. Elsevier Inc.CrossRefPubMedGoogle Scholar
  56. 56.
    Xia H, Cheung WKC, Ng SS, Jiang X, Jiang S, Sze J, et al. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem. 2012;287:9962–71.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68:9125–30.CrossRefPubMedGoogle Scholar
  58. 58.
    Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, et al. Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer. 2008;18:506–14.CrossRefPubMedGoogle Scholar
  59. 59.
    Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E, et al. CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin. Exp. Metastasis. 2012.Google Scholar
  60. 60.
    Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, et al. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp. Mol. Pathol. 2011. p. 596–602.Google Scholar
  61. 61.
    Wu Q, Guo R, Lin M, Zhou B, Wang Y. MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol. 2011;122:149–54. Elsevier Inc.CrossRefPubMedGoogle Scholar
  62. 62.
    Comijn J, Berx G, Vermassen P, Verschueren K, Van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7:1267–78.CrossRefPubMedGoogle Scholar
  63. 63.
    Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279:2047–59.CrossRefPubMedGoogle Scholar
  64. 64.
    Henry JC, Park J-K, Jiang J, Kim JH, Nagorney DM, Roberts LR, et al. miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2010;403:120–5. Elsevier Inc.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Qiang R, Wang F, Shi L-Y, Liu M, Chen S, Wan H-Y, et al. Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. Int J Biochem Cell Biol. 2011;43:632–41. Elsevier Ltd.CrossRefPubMedGoogle Scholar
  66. 66.
    Penna E, Orso F, Cimino D, Tenaglia E, Lembo A, Quaglino E, et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. Eur Mol Biol Organ J. 2011;30:1990–2007. Nature Publishing Group.CrossRefGoogle Scholar
  67. 67.
    Yang H, Kong W, He L, Zhao J-J, O’Donnell JD, Wang J, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res US. 2008;68:425–33.CrossRefGoogle Scholar
  68. 68.
    Xu C-X, Xu M, Tan L, Yang H, Permuth-Wey J, Kruk PA, et al. MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem. 2012;287:34970–8.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Ma S, Chan K-W, Hu L, Lee TK-W, Wo JY-H, Ng IO-L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132:2542–56.CrossRefPubMedGoogle Scholar
  70. 70.
    Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.CrossRefPubMedGoogle Scholar
  71. 71.
    Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang H-Y, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136:1012–24.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13:153–66.CrossRefPubMedGoogle Scholar
  73. 73.
    Yang W, Yan H-X, Chen L, Liu Q, He Y-Q, Yu L-X, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 2008;68:4287–95.CrossRefPubMedGoogle Scholar
  74. 74.
    Ji J, Yamashita T, Budhu A, Forgues M, Jia H-L, Li C, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50:472–80.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med. 2012;16:160–73.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Zhang J, Luo N, Luo Y, Peng Z, Zhang T, Li S. microRNA-150 inhibits human CD133-positive liver cancer stem cells through. Int J Oncol. 2011;40:747–56.PubMedGoogle Scholar
  77. 77.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res Am Assoc Cancer Res. 2005;65:10946–51.Google Scholar
  78. 78.
    Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004;117:3539–45.CrossRefPubMedGoogle Scholar
  79. 79.
    Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci. 2001;114:3865–72.PubMedGoogle Scholar
  80. 80.
    Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5. Nature Publishing Group.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Fan X, Chen X, Deng W, Zhong G, Cai Q, Lin T. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer. 2013;13:61.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Zhang X, Liu S, Hu T, Liu S, He Y, Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50:490–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Shi S, Yao W, Xu J, Long J, Liu C, Yu X. Combinational therapy: new hope for pancreatic cancer? Cancer Lett. 2012;317(2):127–35.CrossRefPubMedGoogle Scholar
  84. 84.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMedGoogle Scholar
  85. 85.
    He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  86. 86.
    Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17:1298–307.CrossRefPubMedGoogle Scholar
  87. 87.
    Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Ji Q, Hao X, Meng Y, Zhang M, DeSano J, Fan D, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer BioMed Cent. 2008;8:266.CrossRefGoogle Scholar
  89. 89.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4:e6816.PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Jung DE, Wen J, Oh T, Song SY. Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas. 2011;40:1180–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol. 2009;10:116–25.PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Akunuru S, James Zhai Q, Zheng Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis. 2012;3:e352. Nature Publishing Group.PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37:D98–104.PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603. Elsevier Ltd.PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Yin G, Chen R, Alvero AB, Fu H-H, Holmberg J, Glackin C, et al. TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene. 2010;29:3545–53. Macmillan Publishers Limited.PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Cheng CY, Il HC, Corney DC, Flesken-Nikitin A, Jiang L, Ner GM, et al. MiR-34 Cooperates with p53 in Suppression of Prostate Cancer by Joint Regulation of Stem Cell Compartment. Cell Rep. 2014;6:1000–7.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of BiotechnologyPanjab UniversityChandigarhIndia
  2. 2.Functional Genomics UnitCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations