Advertisement

Tumor Biology

, Volume 35, Issue 10, pp 9603–9612 | Cite as

Phyllodes tumor of the breast: role of Axl and ST6GalNAcII in the development of mammary phyllodes tumors

  • Dongliang Ren
  • Yanyan Li
  • Yanxin Gong
  • Jingchao Xu
  • Xiaolong Miao
  • Xiangnan Li
  • Chen Liu
  • Li Jia
  • Yongfu ZhaoEmail author
Research Article

Abstract

Phyllodes tumor exhibits an aggressive growth. The expression of many biological markers has been explored to discriminate between different grades of phyllodes tumor and to predict their behavior. The purpose of this study was to evaluate the implications of Axl and ST6GalNAcII in phyllodes tumors. Real-time PCR, Western blot, and immunohistochemical were used to analyze differential expression of ST6GalNAcII and Axl in phyllodes tumor (PT) cell lines and tissue specimens. RNAi assay, ECM invasion assay, and tumorigenicity assay were used to analyze the altered expression of ST6GalNAcII gene effects on the expression of Axl and invasive ability of phyllodes tumor cells in vitro and in vivo. Compared to benign tumors, borderline and malignant ones showed a remarkable increase in mRNA levels of Axl and ST6GalNAcII gene, and it was higher in malignant tumor cells than in borderline tumor cells. When ST6GalNAcII was silenced, compared to the control, the expression level of Axl was significantly reduced in malignant tumor cell transfectants and knockdown of ST6GalNAcII gene significantly inhibited invasive activity in malignant tumor cells. The high expression of ST6GalNAcII and Axl was significantly correlated with tumor grade and distance metastasis by immunohistochemical analysis. Axl and ST6GalNAcII expression increases with increasing tumor grade in mammary phyllodes tumors. ST6GalNAc II might be participated in the glycosylation of Axl, and this Axl glycosylation may mediate the tumorigenicity, invasion, and distant metastasis of PT cells.

Keywords

Phyllodes tumor Breast carcinoma Axl ST6GalNAcII 

Notes

Conflicts of interest

None

References

  1. 1.
    Esposito NN, Mohan D, Brufsky A, Lin Y, Kapali M, Dabbs DJ. Phyllodes tumor: a clinicopathologic and immunohistochemical study of 30 cases. Arch Pathol Lab Med. 2006;130:1516–21.PubMedGoogle Scholar
  2. 2.
    Karim RZ, Gerega SK, Yang YH, Spillane A, Carmalt H, Scolyer RA, et al. Phyllodes tumors of the breast: a clinicopathological analysis of 65 cases from a single institution. Breast. 2009;18:165–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Foxcroft LM, Evans EB, Porter AJ. Difficulties in the preoperative diagnosis of phyllodes tumors of the breast: a study of 84 cases. Breast. 2007;16:27–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen WH, Cheng SP, Tzen CY, Yang TL, Jeng KS, Liu CL, et al. Surgical treatment of phyllodes tumors of the breast: retrospective review of 172 cases. J Surg Oncol. 2005;91:185–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Lewitan G, Goldberg C, Cabaleiro C, Espora SM. Phyllodes tumor in a 11 years-old girl: report of a case. Arch Argent Pediatr. 2010;108(2):41–3.Google Scholar
  6. 6.
    World Health Organization. Histologic typing of breast tumors, vol. 2. 2nd ed. Geneva, Switzerland: World Health Organization; 1981. p. 22.Google Scholar
  7. 7.
    Ortega E, Aranda FI, Chuliá MT, Niveiro M, Payá A, Seguí J. Phyllodes tumor of the breast with actin inclusions in stromal cells: diagnosis by fine-needle aspiration cytology. Diagn Cytopathol. 2001;25(2):115–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen CM, Chen CJ, Chang CL, Shyu JS, Hsieh HF, Harn HJ. CD34, CD117, and actin expression in phyllodes tumor of the breast. J Surg Res. 2000;94(2):84–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Tse GM, Tsang AK, Putti TC, Scolyer RA, Lui PC, Law BK, et al. Stromal CD10 expression in mammary fibroadenomas and phyllodes tumours. J Clin Pathol. 2005;58(2):185–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tse GM, Ma TK, Chan KF, Law BK, Chen MH, Li KH, et al. Increased microvessel density in malignant and borderline mammary phyllodes tumours. Histopathology. 2001;38(6):567–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Millar EK, Beretov J, Marr P, Sarris M, Clarke RA, Kearsley JH, et al. Malignant phyllodes tumours of the breast display increased stromal p53 protein expression. Histopathology. 1999;34(6):491–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Kuroda N, Sugimoto T, Ueda S, Takahashi T, Moriki T, Sonobe H, et al. Malignant phyllodes tumor of the breast with expression of osteonectin and vinculin. Pathol Int. 2001;51(4):277–82.CrossRefPubMedGoogle Scholar
  13. 13.
    Korshunov VA. Axl-dependent signalling: a clinical update. Clin Sci (Lond). 2012;122(8):361–8.CrossRefGoogle Scholar
  14. 14.
    Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Göhring W, Ullrich A, et al. Structural basis for Gas6–Axl signalling. EMBO J. 2006;25(1):80–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Janssen JW, Schulz AS, Steenvoorden AC, Schmidberger M, Strehl S, Ambros PF, et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene. 1991;6:2113–20.PubMedGoogle Scholar
  16. 16.
    O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, et al. Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991;11:5016–31.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Holland SJ, Powell MJ, Franci C, Chan EW, Friera AM, Atchison RE, et al. Multipleroles for the receptor tyrosine kinase axl in tumor formation. Cancer Res. 2005;65(20):9294–303.CrossRefPubMedGoogle Scholar
  18. 18.
    Linger R, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J. 2001;18:841–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Dwek RA. Glycobiology: toward understanding the function of sugars. Chem Rev. 1996;96:683–720.CrossRefPubMedGoogle Scholar
  21. 21.
    Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, et al. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem. 2002;277:16960–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Li J, Jia L, Ma ZH, Ma QH, Yang XH, Zhao YF. Axl glycosylation mediates tumor cell proliferation, invasion and lymphatic metastasis in murine hepatocellular carcinoma. World J Gastroenterol. 2012;18(38):5369–76.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Harvey BE, Toth CA, Wagner HE, Steele Jr GD, Thomas P. Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Cancer Res. 1992;52:1775–9.PubMedGoogle Scholar
  24. 24.
    Majuri ML, Niemela R, Tiisala S, Renkonen O, Renkonen R. Expression function of alpha 2,3-sialyl- and alpha 1,3/1,4-fucosyltransferases in colon adenocarcinoma cell lines: role in synthesis of E-selectin counter-receptors. Int J Cancer. 1995;63:551–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Yogeeswaran G, Salk PL. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981;212:1514–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Dennis J, Waller C, Timpl R, Schirrmacher V. Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature. 1982;300:274–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Marcos NT, Pinho S, Grandela C, Cruz A, Samyn-Petit B, Harduin-Lepers A, et al. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res. 2004;64:7050–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Schneider F, Kemmner W, Haensch W, Franke G, Gretschel S, Karsten U, et al. Overexpression of sialyltransferase CMP-sialic acid: Galbeta 1,3GalNAc-R alpha6-sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res. 2001;11:4605–11.Google Scholar
  29. 29.
    Xu LX, Zhao MH. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 2005;68:167–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Ding JX, Xu LX, Lv JC, Zhao MH, Zhang H, Wang HY. Aberrant sialylation of serum IgA1 was associated with prognosis of patients with IgA nephropathy. Clin Immunol. 2007;125:268–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Ding JX, Xu LX, Zhu L, Lv JC, Zhao MH, Zhang H. Activity of α2,6-sialyltransferase and its gene expression in peripheral B lymphocytes in patients with IgA nephropathy. Scand J Immunol. 2009;69:174–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, Van der Vijver MJ. WHO classification of tumours of the breast. Geneva: WHO; 2012.Google Scholar
  33. 33.
    Xu J, Jia L, Ma H, Li Y, Ma Z, Zhao Y. Axl geneknockdown inhibits the metastasis properties of hepatocellular carcinoma via PI3K/Akt-PAK1 signal pathway. Tumour Biol. 2013.Google Scholar
  34. 34.
    Meric F, Lee WP, Sahin A, Zhang H, Kung HJ, Hung MC. Expression profile of tyrosine kinases in breast cancer. Clin Cancer Res. 2002;8:361–7.PubMedGoogle Scholar
  35. 35.
    Vajkoczy P, Knyazev P, Kunkel A, Capelle HH, Behrndt S, von Tengg-Kobligk H, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci U S A. 2006;103:5799–804.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW. Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene. 2008;27:4044–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Christofori G. New signals from the invasive front. Nature. 2006;41:444–50.CrossRefGoogle Scholar
  38. 38.
    Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L, et al. AXL is potential target for therapeutic intervention in breast cancer progression. Cancer Res. 2008;68:1905–15.CrossRefPubMedGoogle Scholar
  39. 39.
    Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1999;1473:4–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 1996;56:5309–18.PubMedGoogle Scholar
  41. 41.
    Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–67.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhao YF, Li YP, Ma HY, Dong WJ, Zhou HM, Song XB, et al. Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. Mol Cell Proteomics. 2014;13(2):520–36.CrossRefPubMedGoogle Scholar
  43. 43.
    Ding DX, Vera JC, Heaney ML, Golde DW. N-glycosylation of the human granulocyte-macrophage colony-stimulating factor receptor alpha subunit is essential for ligand binding and signal transduction. J Biol Chem. 1995;270:24580–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 2009;28(39):3442–55.CrossRefPubMedGoogle Scholar
  45. 45.
    Gjerdrum C, Tiron C, Høiby T, Stefansson I, Haugen H, Sandal T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci U S A. 2010;107(3):1124–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Saxon E, Bertozzi CR. Chemical and biological strategies for engineering cell surface glycosylation. Annu Rev Cell Dev Biol. 2001;17:1–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Taniguchi N, Miyoshi E, Gu J, Honke K, Matsumoto A. Decoding sugar functions by identifying target glycoproteins. Curr Opin Struct Biol. 2006;16:561–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Ren DL, Jia L, Li YY, Gong YX, Liu C, Zhang X, et al. ST6GalNAcII mediates the invasive properties of breast carcinoma through PI3K/Akt/NF-kB signaling pathway. IUBMB Life. 2014;66(4):300–8.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Dongliang Ren
    • 1
  • Yanyan Li
    • 1
  • Yanxin Gong
    • 1
  • Jingchao Xu
    • 1
  • Xiaolong Miao
    • 1
  • Xiangnan Li
    • 1
  • Chen Liu
    • 1
  • Li Jia
    • 2
  • Yongfu Zhao
    • 1
    Email author
  1. 1.Department of General SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
  2. 2.College of Laboratory MedicineDalian Medical UniversityDalianChina

Personalised recommendations