Tumor Biology

, Volume 35, Issue 10, pp 9859–9877

Association between the CYP3A4 and CYP3A5 polymorphisms and cancer risk: a meta-analysis and meta-regression

  • Xiao-Feng He
  • Zhi-Zhong Liu
  • Jian-Jun Xie
  • Wei Wang
  • Ya-Ping Du
  • Yu Chen
  • Wu Wei
Research Article


Previously published data on the association between CYP3A4 A392G and CYP3A5 Met235Thr polymorphisms and the risk of cancer remained controversial. Thus, we performed a meta-analysis to investigate the association between cancer susceptibility and CYP3A4 A392G (18,629 cases and 22,323 controls from 49 studies) and CYP3A5 Met235Thr polymorphisms (14,334 cases and 18,183 from 39 studies) in different inheritance models. We used odds ratios with 95 % confidence intervals to assess the strength of the association. Overall, significant association was found between CYP3A4 A392G polymorphism and cancer susceptibility (dominant model, odds ratio (OR) = 1.19; 95 % confidence interval (CI) = 1.03–1.38). In the further stratified and sensitivity analyses, significant increased prostate cancer risk was found among Caucasians (dominant model, OR = 1.88; 95 % CI = 1.20–2.95; recessive model, OR = 2.10; 95 % CI = 1.23–3.60; additive model, OR = 1.80, 95 % CI = 1.24–2.63; homozygous model, OR = 2.34, 95 % CI = 1.36–4.03; heterozygote model, OR = 1.79, 95 % CI = 1.11–2.89) for CYP3A4 A392G. For CYP3A5 Met235Thr polymorphism, no significant association was found among overall analysis and any subgroup analysis. In summary, this meta-analysis suggests that CYP3A4 A392G polymorphism is associated with increased prostate cancer risk among Caucasians and CYP3A5 Met235Thr polymorphism is not associated with the risk of cancer.


CYP3A4 CYP3A5 Polymorphism Cancer Meta-analysis 


  1. 1.
    Hasler JA. Pharmacogenetics of cytochromes P450. Mol Aspects Med. 1999;20(12–24):25–137.Google Scholar
  2. 2.
    Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996;6:1–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360:1155–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Shimada T, Martin MV, Pruess-Schwartz D, Marnett LJ, Guengerich FP. Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyren 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res. 1989;49:6304–12.PubMedGoogle Scholar
  5. 5.
    El Sankary W, Gibson GG, Ayrton A, Plant N. Use of a reporter gene assay to predict and rank the potency and efficacy of CYP3A4 inducers. Drug Metab Dispos. 2001;29:1499–504.PubMedGoogle Scholar
  6. 6.
    Roberts-Thomson SJ, McManus ME, Tukey RH, Gonzalez FF, Holder GM. The catalytic activity of four expressed human cytochrome P450s towards benzo[a]pyrene and the isomers of its proximate carcinogen. Biochem Biophys Res Commun. 1993;192:1373–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Shou M, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo[a, l]pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis. 1996;17:2429–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Patten CJ, Smith TJ, Friesen MJ, Tynes RE, Yang CS, Murphy SE. Evidence for cytochrome P450 2A6 and 3A4 as major catalysts for N0-nitrosonornicotine a-hydroxylation by human liver microsomes. Carcinogenesis. 1997;18:1623–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Tsuchiya N, Satoh S, Tada H, Li Z, Ohyama C, Sato K, et al. Influence of CYP3A5 and MDR1 polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation. 2004;78:1182–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11:773–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Shou M, Korzekwa KR, Brooks EN, et al. Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone. Carcinogenesis. 1997;18:207–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Raucy JL. Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products. Drug Metab Dispos. 2003;31:533–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Kadlubar FF, Berkowitz GS, Delongchamp RR, Wang C, Green BL, Tang G, et al. The CYP3A4*1B variant is related to the onset of puberty, a known risk factor for the development of breast cancer. Cancer Epidemiol Biomarkers Prev. 2003;12:327–31.PubMedGoogle Scholar
  15. 15.
    Fernandez P, Zeigler-Johnson CM, Spangler E, van der Merwe A, Jalloh M, Gueye SM, et al. Androgen metabolism gene polymorphisms, associations with prostate cancer risk and pathological characteristics: a comparative analysis between South African and Senegalese men. Prostate Cancer. 2012;2012:798634.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Azarpira N, Ashraf MJ, Khademi B, Darai M, Hakimzadeh A, Abedi E. Study the polymorphism of CYP3A5 and CYP3A4 loci in Iranian population with laryngeal squamous cell carcinoma. Mol Biol Rep. 2011;38:5443–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Sainz J, Rudolph A, Hein R, Hoffmeister M, Buch S, von Schönfels W, et al. Association of genetic polymorphisms in ESR2, HSD17B1, ABCB1, and SHBG genes with colorectal cancer risk. Endocr Relat Cancer. 2011;18:265–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Rodrigues IS, Kuasne H, Losi-Guembarovski R, Fuganti PE, Gregório EP, Kishima MO, et al. Evaluation of the influence of polymorphic variants CYP1A1 2B, CYP1B1 2, CYP3A4 1B, GSTM1 0, and GSTT1 0 in prostate cancer. Urol Oncol. 2011;29:654–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Ociepa-Zawal M, Rubiś B, Filas V, Breborowicz J, Trzeciak WH. Studies on CYP1A1, CYP1B1 and CYP3A4 gene polymorphisms in breast cancer patients. Ginekol Pol. 2009;80:819–23.PubMedGoogle Scholar
  20. 20.
    Reding KW, Li CI, Weiss NS, Chen C, Carlson CS, Duggan D, et al. Genetic variation in the progesterone receptor and metabolism pathways and hormone therapy in relation to breast cancer risk. Am J Epidemiol. 2009;170:1241–9.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kato I, Cichon M, Yee CL, Land S, Korczak JF. African American-preponderant single nucleotide polymorphisms (SNPs) and risk of breast cancer. Cancer Epidemiol. 2009;33:24–30.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk. Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women. Breast Cancer Res Treat. 2010;119:463–74.CrossRefGoogle Scholar
  23. 23.
    Wen H, Ding Q, Fang ZJ, Xia GW, Fang J. Population study of genetic polymorphisms and superficial bladder cancer risk in Han-Chinese smokers in Shanghai. Int Urol Nephrol. 2009;41:855–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Figueroa JD, Malats N, García-Closas M, Real FX, Silverman D, Kogevinas M, et al. Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis. 2008;29:1955–62.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland LB, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis. 2008;29:1164–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Sarma AV, Dunn RL, Lange LA, Ray A, Wang Y, Lange EM, et al. Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF-1, and IGFBP-3 and prostate cancer risk in African-American men: the Flint Men's Health Study. Prostate. 2008;68:296–305.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Nogal A, Coelho A, Catarino R, Morais A, Lobo F, Medeiros R. The CYP3A4 *1B polymorphism and prostate cancer susceptibility in a Portuguese population. Cancer Genet Cytogenet. 2007;177:149–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Voso MT, Fabiani E, D'Alo' F, Guidi F, Di Ruscio A, Sica S, et al. Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes. Ann Oncol. 2007;18:1523–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Bethke L, Webb E, Sellick G, Rudd M, Penegar S, Withey L, et al. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk. BMC Cancer. 2007;7:123.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Bolufer P, Collado M, Barragan E, Calasanz MJ, Colomer D, Tormo M, et al. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol. 2007;136:590–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Berndt SI, Chatterjee N, Huang WY, Chanock SJ, Welch R, Crawford ED, et al. Variant in sex hormone-binding globulin gene and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007;16:165–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Bangsi D, Zhou J, Sun Y, Patel NP, Darga LL, Heilbrun LK, et al. Impact of a genetic variant in CYP3A4 on risk and clinical presentation of prostate cancer among white and African-American men. Urol Oncol. 2006;24:21–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Le Marchand L, Donlon T, Kolonel LN, Henderson BE, Wilkens LR. Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2005;14:1998–2003.CrossRefPubMedGoogle Scholar
  34. 34.
    Pakakasama S, Mukda E, Sasanakul W, Kadegasem P, Udomsubpayakul U, Thithapandha A, et al. Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia. Am J Hematol. 2005;79:202–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Dally H, Bartsch H, Jäger B, Edler L, Schmezer P, Spiegelhalder B, et al. Genotype relationships in the CYP3A locus in Caucasians. Cancer Lett. 2004;207:95–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Nam RK, Zhang WW, Trachtenberg J, Jewett MA, Emami M, Vesprini D, et al. Comprehensive assessment of candidate genes and serological markers for the detection of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2003;12:1429–37.PubMedGoogle Scholar
  37. 37.
    Dally H, Edler L, Jäger B, Schmezer P, Spiegelhalder B, Dienemann H, et al. The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics. 2003;13:607–18.CrossRefPubMedGoogle Scholar
  38. 38.
    Plummer SJ, Conti DV, Paris PL, Curran AP, Casey G, Witte JS. CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2003;12:928–32.PubMedGoogle Scholar
  39. 39.
    Tayeb MT, Clark C, Haites NE, Sharp L, Murray GI, McLeod HL. CYP3A4 and VDR gene polymorphisms and the risk of prostate cancer in men with benign prostate hyperplasia. Br J Cancer. 2003;88:928–32.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Spurdle AB, Goodwin B, Hodgson E, Hopper JL, Chen X, Purdie DM, et al. The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics. 2002;12:355–66.CrossRefPubMedGoogle Scholar
  41. 41.
    Kittles RA, Chen W, Panguluri RK, Ahaghotu C, Jackson A, Adebamowo CA, et al. CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification? Hum Genet. 2002;110:553–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Tayeb MT, Clark C, Sharp L, Haites NE, Rooney PH, Murray GI, et al. CYP3A4 promoter variant is associated with prostate cancer risk in men with benign prostate hyperplasia. Oncol Rep. 2002;9:653–5.PubMedGoogle Scholar
  43. 43.
    Silveira VS, Canalle R, Scrideli CA, Queiroz RG, Lopes LF, Tone LG. CYP3A5 and NAT2 gene polymorphisms: role in childhood acute lymphoblastic leukemia risk and treatment outcome. Mol Cell Biochem. 2012;364:217–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Lim JS, Chen XA, Singh O, Yap YS, Ng RC, Wong NS, et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol. 2011;71:737–50.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Borst L, Wallerek S, Dalhoff K, Rasmussen KK, Wesenberg F, Wehner PS, et al. The impact of CYP3A5*3 on risk and prognosis in childhood acute lymphoblastic leukemia. Eur J Haematol. 2011;86:477–83.CrossRefPubMedGoogle Scholar
  46. 46.
    Sailaja K, Rao DN, Rao DR, Vishnupriya S. Analysis of CYP3A5*3 and CYP3A5*6 gene polymorphisms in Indian chronic myeloid leukemia patients. Asian Pac J Cancer Prev. 2010;11:781–4.PubMedGoogle Scholar
  47. 47.
    Kristiansen W, Haugen TB, Witczak O, Andersen JM, Fosså SD, Aschim EL. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility. Int J Androl. 2011;34:77–83.CrossRefPubMedGoogle Scholar
  48. 48.
    Bajpai P, Tripathi AK, Agrawal D. Genetic polymorphism of CYP3A5 in Indian chronic myeloid leukemia patients. Mol Cell Biochem. 2010;336:49–54.CrossRefPubMedGoogle Scholar
  49. 49.
    Shimada N, Iwasaki M, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, et al. Genetic polymorphisms in estrogen metabolism and breast cancer risk in case-control studies in Japanese, Japanese Brazilians and non-Japanese Brazilians. J Hum Genet. 2009;54:209–15.CrossRefPubMedGoogle Scholar
  50. 50.
    Petrova DT, Yaramov N, Toshev S, Nedeva P, Maslyankov S, von Ahsen N, et al. Genotyping of CYP3A5 polymorphisms among Bulgarian patients with sporadic colorectal cancer and controls. Onkologie. 2007;30:559–63.CrossRefPubMedGoogle Scholar
  51. 51.
    Huang Z, Chai YH, Cen JN. Relationship between the CYP3A5 genetic polymorphism and susceptibility to and prognosis of childhood acute leukemia. Zhonghua Er Ke Za Zhi. 2007;45:546–8.PubMedGoogle Scholar
  52. 52.
    Lu HX, Feng ZB, Feng XL. A case-control study on the association of hepatocellular carcinoma with genetic polymorphisms ofCYP3A5 in a highly aflatoxin B1 contaminated Guangxi area. Zhonghua Gan Zang Bing Za Zhi. 2007;15:705–6.PubMedGoogle Scholar
  53. 53.
    Timofeeva MN, Kropp S, Sauter W, Beckmann L, Rosenberger A, Illig T, et al. CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences. Carcinogenesis. 2009;30:1161–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Dandara C, Ballo R, Parker MI. CYP3A5 genotypes and risk of oesophageal cancer in two South African populations. Cancer Lett. 2005;225:275–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhenhua L, Tsuchiya N, Narita S, Inoue T, Horikawa Y, Kakinuma H, et al. CYP3A5 gene polymorphism and risk of prostate cancer in a Japanese population. Cancer Lett. 2005;225(2):237–43.CrossRefPubMedGoogle Scholar
  56. 56.
    Yeh KT, Chen JC, Chen CM, Wang YF, Lee TP, Chang JG. CYP3A5*1 is an inhibitory factor for lung cancer in Taiwanese. Kaohsiung J Med Sci. 2003;19:201–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Liu TC, Lin SF, Chen TP, Chang JG. Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol Rep. 2002;9:327–9.PubMedGoogle Scholar
  58. 58.
    Yuan XJ, Gu LJ, Zhao HJ, Tang JY, Xue HL, Chen J, et al. Analysis of cytochrome p450 genotype polymorphism in Chinese children with acute leukemia. J Appl Clin Pediatr. 2005;20:654–6.Google Scholar
  59. 59.
    Gervasini G, Garcia-Martin E, Ladero JM, Pizarro R, Sastre J, Martinez C, et al. Genetic variability in cyp3a4 and cyp3a5 in primary liver, gastric and colorectal cancer patients. BMC Cancer. 2007;7:118.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    McDaniel DO, Thurber T, Lewis-Traylor A, Berry C, Barber WH, Zhou X, et al. Differential association of cytochrome p450 3a4 genotypes with onsets of breast tumors in African American versus caucasian patients. J Investig Med Off Publ Am Fed Clin Res. 2011;59:1096–103.Google Scholar
  61. 61.
    Vaarala MH, Mattila H, Ohtonen P, Tammela TL, Paavonen TK, Schleutker J. The interaction of CYP3A5 polymorphisms along the androgen metabolism pathway in prostate cancer. Int J Cancer J Int Cancer. 2008;122:2511–6.CrossRefGoogle Scholar
  62. 62.
    Rao DN, Manjula G, Sailaja K, Surekha D, Raghunadharao D, Rajappa S, et al. Association of CYP3A5*3 polymorphism with development of acute leukemia. Indian J Hum Genet. 2011;17:175–8.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Islam MS, Mostofa AG, Ahmed MU, Sayeed MS, Hassan MR, Hasnat A. Association of CYP3A4, CYP3A5 polymorphisms with lung cancer risk in Bangladeshi population. Tumour Biol. 2014;35:1671–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Taioli E, Sears V, Watson A, Flores-Obando RE, Jackson MD, Ukoli FA, et al. Polymorphisms in CYP17 and CYP3A4 and prostate cancer in men of African descent. Prostate. 2013;73:668–76.CrossRefPubMedGoogle Scholar
  65. 65.
    Fabiani E, Fianchi L, Falconi G, Boncompagni R, Criscuolo M, Guidi F, et al. The BCL2L10 Leu21Arg variant and risk of therapy-related myeloid neoplasms and de novo myelodysplastic syndromes. Leuk Lymphoma. 2014;(in press).Google Scholar
  66. 66.
    Zhou LP, Yao F, Luan H, Wang YL, Dong XH, Zhou WW, et al. CYP3A4*1B polymorphism and cancer risk: a HuGE review and meta-analysis. Tumour Biol. 2013;34:649–60.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang BS, Liu Z, Xu WX, Sun SL. CYP3A5*3 polymorphism and cancer risk: a meta-analysis and meta-regression. Tumour Biol. 2013;34:2357–66.CrossRefPubMedGoogle Scholar
  68. 68.
    Davey SG, Egger M. Meta-analyses of randomized controlled trials. Lancet. 1997;350:1182.Google Scholar
  69. 69.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analysis. Br Med J. 2003;327:557–60.CrossRefGoogle Scholar
  70. 70.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. Natl Cancer Inst. 1959;22:719–48.Google Scholar
  71. 71.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMedGoogle Scholar
  72. 72.
    Klug SJ et al. TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol. 2009;10:772–84.CrossRefPubMedGoogle Scholar
  73. 73.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMedGoogle Scholar
  74. 74.
    Egger M, Smith DG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315:629–34.CrossRefGoogle Scholar
  75. 75.
    Dual S, Tweedie R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc. 2000;95:89–98.Google Scholar
  76. 76.
    Gonzales FJ. Human cytochrome P450: problems and prospects. Trends Pharmacol Sci. 1992;13:346–52.CrossRefGoogle Scholar
  77. 77.
    Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst. 1998;90:1225–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Hirschhorn JN, Lohmueller K, Byrne E. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–61.CrossRefPubMedGoogle Scholar
  79. 79.
    Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions version 5.0.1. Oxford: The Cochrane Collaboration; 2008.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Xiao-Feng He
    • 1
  • Zhi-Zhong Liu
    • 2
  • Jian-Jun Xie
    • 2
  • Wei Wang
    • 2
  • Ya-Ping Du
    • 2
  • Yu Chen
    • 2
  • Wu Wei
    • 3
  1. 1.Department of ResearchPeace Hospital of Changzhi Medical CollegeChangzhiPeople’s Republic of China
  2. 2.Department of GastroenterologyThe Second People’s Hospital of ZhuhaiZhuhaiPeople’s Republic of China
  3. 3.Department of HematologyPeace Hospital of Changzhi Medical CollegeChangzhiPeople’s Republic of China

Personalised recommendations