Tumor Biology

, Volume 35, Issue 9, pp 9009–9014 | Cite as

Silencing of Src by siRNA inhibits laryngeal carcinoma growth through the Src/PI-3 K/Akt pathway in vitro and in vivo

  • Yan Song
  • Yao-dong Dong
  • Wei-liang Bai
  • Xiu-lan Ma
Research Article

Abstract

This study aimed to investigate the expression, function, and possible mechanism of Src in the Hep-2 cell line. We used Src-specific small interfering RNA (siRNA) to inhibit the expression of Src in Hep-2 cells. RT-PCR and Western blot were applied to evaluate the expression level of Src after RNA interference, and the MTT assay and flow cytometry were used to observe the expression of PI-3 K and Akt. siRNA can downregulate the expression of Src in Hep-2 cells. Downregulation of Src decreased PI-3 K and Akt expression. We found that Src knockdown inhibits the proliferation of Hep-2 cells and the growth of laryngeal carcinoma in vivo. This study has demonstrated that Src participates in the regulation of apoptosis through the Src/PI-3 K/Akt signaling pathway in the Hep-2 cell line. Silencing of Src by siRNA is a viable approach in laryngeal carcinoma treatment.

Keywords

Src RNA interference Laryngeal carcinoma Apoptosis 

References

  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Sanderson RJ, Ironside JA. Squamous cell carcinomas of the head and neck. BMJ. 2002;325:822–7.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22:337–58.CrossRefPubMedGoogle Scholar
  5. 5.
    Trevino JG, Summy JM, Lesslie DP, et al. Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol. 2006;168:962–72.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Johnson FM, Saigal B, Talpaz M, Donato NJ. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res. 2005;11:6924–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Slack JK, Adams RB, Rovin JD, Bissonette EA, Stoker CE, Parsons JT. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene. 2001;20:1152–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59–67.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Dayu Li, Marie A. Shatos, Robin R. Hodges, and Darlene A. Role of PKCa Activation of Src, PI-3K/AKT, and ERK in EGF stimulated proliferation of rat and human conjunctival goblet cells. Dartt IOVS,2013; 54(8): 5661-5673Google Scholar
  11. 11.
    Dong LB, Li GQ, Tian ZH, Wang ZM, Xu K. Expressions of Src homology 2 domain-containing phosphatase and its clinical significance in laryngeal carcinoma. Genet Mol Res. 2013;12(4):4207–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Franke TF. PI3K/Akt: getting it right matters. Oncogene. 2008;27:6473–88.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen JH, Yeh KT, Yang YM, Chang JG, Lee HE, Hung SY. High expressions of histone methylation- and phosphorylation-related proteins are associated with prognosis of oral squamous cell carcinoma in male population of Taiwan. Med Oncol. 2013;30:513.CrossRefPubMedGoogle Scholar
  14. 14.
    Tang DG, Shin YJ, Kim J-H. The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS ONE. 2012;7:e30393.CrossRefGoogle Scholar
  15. 15.
    Hock H. A complex polycomb issue: the two faces of EZH2 in cancer. Genes Dev. 2012;26:751–5.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Nakagawa S et al. Enhancer of zeste homolog 2 (EZH2) promotes progression of cholangiocarcinoma cells by regulating cell cycle and apoptosis. Ann Surg Oncol. 2013;3:667–75.CrossRefGoogle Scholar
  17. 17.
    Song Y, Sun X, Bai W-l, Ji W-y. Antitumor Effects of dasatinib on laryngeal squamous cell carcinoma in vivo and in vitro. Eur Arch Otorhinolaryngol Head Neck. 2013;270(4):1397–404.CrossRefGoogle Scholar
  18. 18.
    Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res. 2001;61(2):589–93.PubMedGoogle Scholar
  19. 19.
    Liau SS, Jazag A, Whang EE. HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res. 2006;66(24):11613–22.CrossRefPubMedGoogle Scholar
  20. 20.
    Feng F-L, Yong Y, Liu C, Zhang B-H, Cheng Q-B, Li B, et al. KAT5 silencing induces apoptosis of GBC-SD cells through p38MAPK-mediated upregulation of cleaved Casp9. Int J Clin Exp Pathol. 2014;7(1):80–91.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Ye P, Liu J, He F, Wen X, Yao K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci. 2014;11(1):17–23.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yan Song
    • 1
  • Yao-dong Dong
    • 1
  • Wei-liang Bai
    • 1
  • Xiu-lan Ma
    • 1
  1. 1.Department of Otorhinolaryngology, The Shengjing HospitalChina Medical UniversityShenyangChina

Personalised recommendations