Tumor Biology

, Volume 35, Issue 8, pp 8225–8233 | Cite as

Expression of proteins involved in epigenetic regulation in human cutaneous melanoma and peritumoral skin

  • Anatoly Uzdensky
  • Svetlana Demyanenko
  • Mikhail Bibov
  • Svetlana Sharifulina
  • Oleg Kit
  • Yury Przhedetski
  • Viktoria Pozdnyakova
Research Article


Epigenetic processes play a critical role in melanoma development. However, little is known about proteins responsible for epigenetic transformations in melanoma cells. The processes in the peritumoral skin within the excision margin are almost unstudied. We studied the changes in expression of 112 proteins involved in epigenetic regulation of gene expression in the human cutaneous melanoma and its peritumoral zone using “The Proteomic Antibody Microarrays” (GRAA2, Sigma-Aldrich). Dimethylated histone H3 at lysines 4 and 9 as well as proteins involved in the regulation of transcription (histone deacetylases HDAC-1 and HDAC-11, DNA methyl-binding protein Kaiso), cell cycle control (protein kinases Aurora-В and PKR, chromosome protein CENP-E, and phosphorylated and acetylated histone H3), DNA repair (phosphorylated histone H2AX), and nuclear protein import (importins α3 and α5/7) were over-expressed in the melanoma tissue as compared with normal skin. At the same time, HDAC-10 and proliferating cell nuclear antigen PCNA were downregulated. In the peritumoral skin, at the excision margin (1–2 cm from the melanoma edge), we observed similar changes in expression of these proteins and, additionally, over-expression of arginine methyltransferases PRMT5 and NAD-dependent histone deacetylase SIR2. Histone methyltransferase G9a and metastasis-associated protein 2 were downregulated. Therefore, epigenetic regulation that requires histone modifications and expression of some regulatory proteins is of importance for melanoma development and propagation. The observed changes in the peritumoral skin may indicate the epigenetic pre-tuning in this zone possibly involved in malignant transformation. These results can be potentially useful for melanoma diagnostics and targeted therapy.


Melanoma Peritumoral zone Epigenetics Proteomics 



The work was supported by Russian Ministry of Education and Sciences (grant no. 16.740.11.0368). Authors thank Prof. T.P. Shkurat , head of the Institute of Biology, for kind providing the microarray scanner.

Conflicts of interest



  1. 1.
    Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Friedman RJ, Heilman ER. The pathology of malignant melanoma. Dermatol Clin. 2002;20:659–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Iacobuzio-Donahue CA. Epigenetic changes in cancer. Annu Rev Pathol Mech Disord. 2009;4:229–49.CrossRefGoogle Scholar
  5. 5.
    Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.PubMedCrossRefGoogle Scholar
  6. 6.
    Tellez CS, Shen L, Estécio MR, Jelinek J, Gershenwald JE, Issa JP. CpG island methylation profiling in human melanoma cell lines. Melanoma Res. 2009;19:146–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Schinke C, Mo Y, Yu Y, Amiri K, Sosman J, Greally J, et al. Aberrant DNA methylation in malignant melanoma. Melanoma Res. 2010;20:253–65.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Rubinstein JC, Tran N, Ma S, Halaban R, Krauthammer M. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma. BMC: Medical Genomics. 2010 3:
  9. 9.
    Howell Jr PM, Liu S, Ren S, Behlen C, Fodstad O, Riker AI. Epigenetics in human melanoma. Cancer Control. 2009;16:200–18.PubMedGoogle Scholar
  10. 10.
    van den Hurk K, Niessen HE, Veeck J, van den Oord JJ, van Steensel MA, Zur Hausen A, et al. Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta. 2012;182:89–102.Google Scholar
  11. 11.
    Venza M, Visalli M, Catalano T, Fortunato C, Oteri R, Teti D, et al. Impact of DNA methyltransferases on the epigenetic regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in malignant melanoma. Biochem Biophys Res Commun. 2013;441:743–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Venza I, Visalli M, Oteri R, Cucinotta M, Teti D, Venza M. Class II-specific histone deacetylase inhibitors MC1568 and MC1575 suppress IL-8 expression in human melanoma cells. Pigment Cell Melanoma Res. 2013;26:193–204.PubMedCrossRefGoogle Scholar
  13. 13.
    Sladden MJ, Balch C, Barzilai DA, Berg D, Freiman A, Handiside T, et al. Surgical excision margins for primary cutaneous melanoma. Cochrane Database Syst Rev. 2009;7, CD004835.Google Scholar
  14. 14.
    Magdasieva KK, Frantsiyanz EM, Rosenko LY, Pozdnyakova VV, Gyabarov FR. The metabolism state in the perifocal zone and resection line of cutaneous melanoma. Sib Oncol J. 2012;1:99–100 (in Russian).Google Scholar
  15. 15.
    Sansom OJ, Maddison K, Clarke AR. Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer. Nat Clin Pract Oncol. 2007;4:305–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006;26:199–208.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene. 2007;26:77–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell. 2005;6:838–46.CrossRefGoogle Scholar
  19. 19.
    Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111:381–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Takase K, Oda S, Kuroda M, Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One. 2013;8:e58473.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–49.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby PJ, et al. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell. 2007;6:577–91.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Bardai FH, Price V, Zaayman M, Wang L, D'Mello SR. Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem. 2012;287:35444–53.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lee JH, Jeong EG, Choi MC, Kim SH, Park JH, Song SH, et al. Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells. Mol Cell. 2010;30:107–12.CrossRefGoogle Scholar
  25. 25.
    Vader G, Lens SM. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta. 2008;1786:60–72.PubMedGoogle Scholar
  26. 26.
    Bonet C, Giuliano S, Ohanna M, Bille K, Allegra M, Lacour JP, et al. Aurora B is regulated by the MAPK/ERK signaling pathway and is a valuable potential target in melanoma cells. J Biol Chem. 2012;287:29887–98.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell. 2000;5:905–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Waga S, Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 1998;67:721–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Delgado N, De Lucca FL. Knockdown of PKR expression by RNAi reduces pulmonary metastatic potential of B16-F10 melanoma cells in mice: possible role of NF-κB. Cancer Lett. 2007;258:118–25.CrossRefGoogle Scholar
  30. 30.
    Garcia MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev. 2006;70:1032–60.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Whittom AA, Xu H, Hebert MD. Coilin levels and modifications influence artificial reporter splicing. Cell Mol Life Sci. 2008;65:1256–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Wasco MJ, Pu RT, Yu L, Su L, Ma L. Expression of gamma-H2AX in melanocytic lesions. Hum Pathol. 2008;39:1614–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Sarasin A, Kauffmann A. Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mut Res. 2008;659:49–55.CrossRefGoogle Scholar
  34. 34.
    Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. Biochem Mosc. 2007;72:1439–57.CrossRefGoogle Scholar
  35. 35.
    Fagerlund R, Melen K, Cao X, Julkunen I. NF-kappaB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules. Cell Signal. 2008;20:1442–51.PubMedCrossRefGoogle Scholar
  36. 36.
    Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci. 2011;36:633–41.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Andreu-Perez P, Esteve-Puig R, de Torre-Minguela C, Lopez-Fauqued M, Bech-Serra JJ, Tenbaum S, et al. Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci Signal. 2011;4:ra58.PubMedGoogle Scholar
  38. 38.
    Nicholas C, Yang J, Peters SB, Bill MA, Baiocchi RA, Yan F, et al. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1). PLoS One. 2013;8:e74710.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Song NY, Surh YJ. Janus-faced role of SIRT1 in tumorigenesis. Ann N Y Acad Sci. 2012;1271:10–9.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Manavathi B, Singh K, Kumar R. MTA family of coregulators in nuclear receptor biology and pathology. Nucl Recept Signal. 2007;5:e010.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011;25:781–8.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Anatoly Uzdensky
    • 1
  • Svetlana Demyanenko
    • 1
  • Mikhail Bibov
    • 1
  • Svetlana Sharifulina
    • 1
  • Oleg Kit
    • 2
  • Yury Przhedetski
    • 2
  • Viktoria Pozdnyakova
    • 2
  1. 1.Department of Biophysics and BiocyberneticsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Rostov Research Institute of OncologyRostov-on-DonRussia

Personalised recommendations