Tumor Biology

, Volume 35, Issue 8, pp 8103–8114 | Cite as

HIFs enhance the migratory and neoplastic capacities of hepatocellular carcinoma cells by promoting EMT

  • Yang Liu
  • Yawei Liu
  • Xiaolu Yan
  • Yuan Xu
  • Fei Luo
  • Jing Ye
  • Han Yan
  • Xiaojun Yang
  • Xiaodan Huang
  • Jianping Zhang
  • Guozhong Ji
Research Article

Abstract

Hepatocellular carcinoma (HCC) is one of the most fatal cancers. Although the involvement of the epithelial-to-mesenchymal transition (EMT) in HCC progression is established, the mechanisms modulating this phenomenon remain unclear. Here, we demonstrate that hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, modulate the EMT through Twist1, a regulator of the EMT. The levels of HIF-1α and HIF-2α in HCC tissues were higher than those in matched, non-tumor surrounding tissues. In HCC samples, the levels of HIF-1α and HIF-2α negatively correlated with the levels of E-cadherin but positively correlated with the levels of vimentin. In highly metastatic MHCC97H cells, the levels of HIF-1α, HIF-2α, and Twist1 were higher than those in weakly metastatic HepG2 cells. In HepG2 cells, over-expression of HIFs enhanced levels of Twist1 and the EMT, which elevated the migratory and neoplastic capacities of cells. For MHCC97H cells, inhibition of HIFs reduced Twist1 levels and the EMT, which reduced their migratory and neoplastic capacity. Thus, the promotion of EMT by HIFs via Twist1 enhanced the migration and neoplastic capacities of HCC cells.

Keywords

Hepatocellular carcinoma (HCC) Hypoxia-inducible factors (HIFs) Epithelial–mesenchymal transition (EMT) Migration Neoplastic capacities 

Notes

Acknowledgments

The authors wish to thank Donald L. Hill (University of Alabama at Birmingham, USA) for editing. This work was supported by the Natural Science Foundations of China (81272713 and 81100253), Natural Science Foundations of Jiangsu Province (JS20130508), and a Project Funded by Nanjing Medical University (2011NJMU244).

Conflict of interest

None

Supplementary material

13277_2014_2056_MOESM1_ESM.doc (398 kb)
ESM 1 (DOC 398 kb)
13277_2014_2056_MOESM2_ESM.doc (29 kb)
Table S1 (DOC 29 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61:69–90.Google Scholar
  2. 2.
    Stebbing J, Filipovic A, Giamas G. Claudin-1 as a promoter of emt in hepatocellular carcinoma. Oncogene. 2013;32:4871–2.PubMedCrossRefGoogle Scholar
  3. 3.
    van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, et al. Epithelial–mesenchymal transition in hepatocellular carcinoma. Future Oncol. 2009;5:1169–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang J, Tang YL, Liang XH. Emt: A new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 2011;11:714–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Ogunwobi OO, Liu C. Therapeutic and prognostic importance of epithelial-mesenchymal transition in liver cancers: insights from experimental models. Crit Rev Oncol Hematol. 2012;83:319–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Naber HP, Drabsch Y, Snaar-Jagalska BE, ten Dijke P, van Laar T. Snail and slug, key regulators of tgf-beta-induced emt, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun. 2013;435:58–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Hofman P, Vouret-Craviari V. Microbes-induced emt at the crossroad of inflammation and cancer. Gut Microbes. 2012;3:176–85.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Tang O, Chen XM, Shen S, Hahn M, Pollock CA. Mirna-200b represses transforming growth factor-beta1-induced emt and fibronectin expression in kidney proximal tubular cells. Am J Physiol Ren Physiol. 2013;304:F1266–73.CrossRefGoogle Scholar
  9. 9.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, et al. Hypoxia induces epithelial–mesenchymal transition via activation of snai1 by hypoxia-inducible factor-1alpha in hepatocellular carcinoma. BMC Cancer. 2013;13:108.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Jiao M, Nan KJ. Activation of pi3 kinase/akt/hif-1alpha pathway contributes to hypoxia-induced epithelial–mesenchymal transition and chemoresistance in hepatocellular carcinoma. Int J Oncol. 2012;40:461–8.PubMedGoogle Scholar
  12. 12.
    Bangoura G, Yang LY, Huang GW, Wang W. Expression of hif-2alpha/epas1 in hepatocellular carcinoma. World J Gastroenterol: WJG. 2004;10:525–30.PubMedGoogle Scholar
  13. 13.
    Cane G, Ginouves A, Marchetti S, Busca R, Pouyssegur J, Berra E, et al. Hif-1alpha mediates the induction of il-8 and vegf expression on infection with afa/dr diffusely adhering E. coli and promotes emt-like behaviour. Cell Microbiol. 2010;12:640–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Moen I, Oyan AM, Kalland KH, Tronstad KJ, Akslen LA, Chekenya M, et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One. 2009;4:e6381.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Xu Y, Li Y, Pang Y, Ling M, Shen L, Yang X, et al. Emt and stem cell-like properties associated with hif-2alpha are involved in arsenite-induced transformation of human bronchial epithelial cells. PLoS One. 2012;7:e37765.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wang XQ, Zhang W, Lui EL, Zhu Y, Lu P, Yu X, et al. Notch1-snail1-e-cadherin pathway in metastatic hepatocellular carcinoma. Int J Cancer J Int Cancer. 2012;131:E163–72.CrossRefGoogle Scholar
  17. 17.
    Ding SJ, Li Y, Shao XX, Zhou H, Zeng R, Tang ZY, et al. Proteome analysis of hepatocellular carcinoma cell strains, mhcc97-h and mhcc97-l, with different metastasis potentials. Proteomics. 2004;4:982–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Xu Y, Li Y, Pang Y, Ling M, Shen L, Jiang R, et al. Blockade of p53 by hif-2alpha, but not hif-1alpha, is involved in arsenite-induced malignant transformation of human bronchial epithelial cells. Arch Toxicol. 2012;86:947–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu Y, Li Y, Li H, Pang Y, Zhao Y, Jiang R, et al. The accumulations of hif-1alpha and hif-2alpha by jnk and erk are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2012;266:187–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Yan H, Dong X, Zhong X, Ye J, Zhou Y, Yang X, Shen J, Zhang J. Inhibitions of epithelial to mesenchymal transition and cancer stem cells-like properties are involved in mir-148a-mediated anti-metastasis of hepatocellular carcinoma. Molecular Carcinogenesis. 2013.Google Scholar
  21. 21.
    Xiang ZL, Zeng ZC, Fan J, Tang ZY, He J, Zeng HY, et al. The expression of hif-1alpha in primary hepatocellular carcinoma and its correlation with radiotherapy response and clinical outcome. Mol Biol Rep. 2012;39:2021–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, et al. Microrna-21 suppresses pten and hsulf-1 expression and promotes hepatocellular carcinoma progression through akt/erk pathways. Cancer Lett. 2013;337:226–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin CY, Tsai PH, Kandaswami CC, Lee PP, Huang CJ, Hwang JJ, et al. Matrix metalloproteinase-9 cooperates with transcription factor snail to induce epithelial-mesenchymal transition. Cancer Sci. 2011;102:815–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Thomas MB, Jaffe D, Choti MM, Belghiti J, Curley S, Fong Y, et al. Hepatocellular carcinoma: consensus recommendations of the national cancer institute clinical trials planning meeting. J Clin Oncol : Off J Am Soc Clin Oncol. 2010;28:3994–4005.CrossRefGoogle Scholar
  25. 25.
    Gordan JD, Thompson CB, Simon MC. Hif and c-myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007;12:108–13.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Philip B, Ito K, Moreno-Sanchez R, Ralph SJ. Hif expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis. 2013;34:1699–707.PubMedCrossRefGoogle Scholar
  27. 27.
    Dai CX, Gao Q, Qiu SJ, Ju MJ, Cai MY, Xu YF, et al. Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and myc, is a critical prognostic factor in patients with hcc after surgery. BMC Cancer. 2009;9:418.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Liu H, Chen G, Zhang W, Zhu JY, Lin ZQ, Gong ZC, et al. Overexpression of macrophage migration inhibitory factor in adenoid cystic carcinoma: correlation with enhanced metastatic potential. J Cancer Res Clin Oncol. 2013;139:287–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Han M, Liu M, Wang Y, Mo Z, Bi X, Liu Z, et al. Re-expression of mir-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in mcf-7 cells. Mol Cell Biochem. 2012;363:427–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang Q, Bai X, Chen W, Ma T, Hu Q, Liang C, et al. Wnt/beta-catenin signaling enhances hypoxia-induced epithelial–mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1alpha signaling. Carcinogenesis. 2013;34:962–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Peinado H, Olmeda D, Cano A. Snail, zeb and bhlh factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Sun D, Sun B, Liu T, Zhao X, Che N, Gu Q, et al. Slug promoted vasculogenic mimicry in hepatocellular carcinoma. J Cell Mol Med. 2013;17:1038–47.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Zhao XL, Sun T, Che N, Sun D, Zhao N, Dong XY, et al. Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial–mesenchymal transition regulator twist1. J Cell Mol Med. 2011;15:691–700.PubMedCrossRefGoogle Scholar
  34. 34.
    Hanna SC, Krishnan B, Bailey ST, Moschos SJ, Kuan PF, Shimamura T, et al. Hif1alpha and hif2alpha independently activate src to promote melanoma metastases. J Clin Invest. 2013;123:2078–93.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Chen JS, Huang XH, Wang Q, Huang JQ, Zhang LJ, Chen XL, et al. Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/akt signaling-mediated activation of matrix metalloproteinase (mmp)-2 and mmp-9 in liver cancer. Carcinogenesis. 2013;34:10–9.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yang Liu
    • 1
  • Yawei Liu
    • 2
  • Xiaolu Yan
    • 3
  • Yuan Xu
    • 4
  • Fei Luo
    • 4
  • Jing Ye
    • 2
  • Han Yan
    • 2
  • Xiaojun Yang
    • 2
  • Xiaodan Huang
    • 3
  • Jianping Zhang
    • 2
  • Guozhong Ji
    • 3
  1. 1.The First Clinic Medical CollegeNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of General Surgery, the Second Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, the Second Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  4. 4.School of Public HealthNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations