Advertisement

Tumor Biology

, Volume 35, Issue 8, pp 7733–7741 | Cite as

Triple-negative and luminal A breast tumors: differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p

  • Carlos Marino Cabral Calvano Filho
  • Daniele Carvalho Calvano-MendesEmail author
  • Kátia Cândido Carvalho
  • Gustavo Arantes Maciel
  • Marcos Desidério Ricci
  • Ana Paula Torres
  • José Roberto Filassi
  • Edmund Chada Baracat
Research Article

Abstract

New concepts in epigenetics, microRNAs, and gene expression analysis have significantly enhanced knowledge of cancer pathogenesis over the last decade. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression by base pairing with target messenger RNAs (mRNAs), resulting in the repression of translation or the degradation of mRNA. To compare the carcinogenic process in tumors with different prognoses, we used real-time RT-PCR to evaluate the miRNA expression profiles of 24 triple-negative breast invasive ductal carcinoma, 20 luminal A breast invasive ductal carcinoma, and 13 normal breast parenchyma controls. We extracted total RNA from tissues fixed in formol and embedded in paraffin (FFPE). Results revealed the upregulation of miR-96-5p (9.35-fold; p = 0.000115), miR-182-5p (7.75-fold; p = 0.000033), miR-7-5p (6.71-fold; p = 0.015626), and miR-21-5p (6.10-fold; p = 0.000000) in tumors group. In addition, the expression of miR-125b-5p (4.49-fold; p = 0.000000) and miR-205-5p (4.36-fold; p = 0.006098) was downregulated. When the expression profiles of triple-negative and luminal A tumors were compared, there was enhanced expression of miR-17-5p (4.27-fold; p = 0.000664), miR-18a-5p (9.68-fold; p = 0.000545), and miR-20a-5 (4.07-fold; p = 0.001487) in the triple-negative tumors compared with luminal A. These data suggest that there is a similar regulation of certain miRNAs in triple-negative and luminal A tumors. However, it is possible that differences in the expression of miR-17-92 cluster will explain the phenotypic differences between these molecular tumor subtypes.

Keywords

MicroRNA Breast cancer FFPE tissue Triple-negative Luminal A Cluster miR-17-92 

Notes

Acknowledgments

This research was funded by Fundação de Amparo à Pesquisa do Estado de São paulo—FAPESP, São Paulo-SP, Brazil.

Conflicts of interest

None

References

  1. 1.
    Khoshnaw SM, Green AR, Powe DG, Ellis IO. MicroRNA involvement in the pathogenesis and management of breast cancer. J Clin Pathol. 2009;62:422–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Lynam-Lennon N, Maher SG, Reynolds JV. The roles of microRNA in cancer and apoptosis. Biol Rev. 2009;84:55–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation fator 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A. 2005;102:16961–6.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006;13(12):1108–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, et al. Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One. 2013;8:e54213.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010;28(10):1684–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Sørliea T, Perou CM, Tibshirani R, Turid A, Geislerg S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.CrossRefGoogle Scholar
  9. 9.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284:23204–16.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One. 2010;5:e15797.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA. 2013;19:230–42.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci. 2009;106:1814–9.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010;70:367–77.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Cho WC, Chow AS, Au JS. Restoration of tumour supressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer. 2009;45:2197–206.PubMedCrossRefGoogle Scholar
  16. 16.
    Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.PubMedGoogle Scholar
  17. 17.
    Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer. 2009;9:401.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011;41:210–20.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Sun Y, Fang R, Li C, Li L, Li F, Ye X, et al. Hsa-miR-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun. 2010;396:501–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X, et al. MicroRNA-182 targets cyclic adenosine monophosphate responsive elemento binding protein 1 (CREB1) and suppresses cell growth in human gastric adenocarcinoma. FEBS J. 2012;279:1252–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, et al. Mir-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol. 2012;228(2):204–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ, et al. Pleiotropic effects of miR-183 ~ 96 ~ 182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol. 2012;123:539–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Giles KM, Brown RA, Epis MR, Kalinowski FC, Leedman PJ. miRNA-7-5p inhibits melanoma cell migration and invasion. Biochem Biophys Res Commun. 2013;430:706–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Ozgün A. MicroRNA-21 as an indicator of aggressive phenotype in breast cancer. Onkologie. 2013;36:115–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Li J, Zhang Y, Zhang W, Jia S, Tian R, Kang Y, et al. Genetic heterogeneity of breast cancer metastasis may be related to miR-21 regulation of TIMP-3 in translation. Int J Surg Oncol. 2013;2013:875078.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Niu J, Shi Y, Tan G, Yang CH, Fan M, Pfeffer LM, et al. DNA damage induces NF-KB- dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem. 2012;287:21783–95.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hong L, Yang J, Han Y, Lu Q, Cao J, Syed L. High expression of miR-210 predicts poor survival in patients with breast cancer: a meta-analysis. Gene. 2012;507:135–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Toyama T, Kondo N, Endo Y, Sugiura H, Yoshimoto N, Iwasa M, et al. High expression of microRNA-210 is an independent factor indicating a poor prognosis in Japanese triple-negative breast cancer patients. Jpn J Clin Oncol. 2012;42:256–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, et al. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011;6:e20980.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Piovan C, Palmieri D, Di Leva G, Braccioli L, Casalini P, Nuovo G, et al. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol. 2012;6:458–72.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Mahamodhossen YA, Liu W, Rong-Rong Z. Triple-negative breast cancer: new perspectives for novel therapies. Med Oncol. 2013;30:653.PubMedCrossRefGoogle Scholar
  33. 33.
    Li H, Bian C, Liao L, Li J, Zhao RC. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat. 2011;126:565–75.PubMedCrossRefGoogle Scholar
  34. 34.
    Yang X, Du WW, Li H, Liu F, Khorshidi A, Rutnam ZJ, et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res. 2013;41:9688–704.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kyounghyun K, Gayathri C, Syng-ook L, Daisuke Y, Sastre-Garau X, Pierre-Antoine D, et al. Identification of oncogenic microrna-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene. 2012;31(8):1034–44.CrossRefGoogle Scholar
  36. 36.
    Zuoren Y, Chenguang W, Min W, Zhiping L, Mathew CC, Manran L, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182(3):509–17.CrossRefGoogle Scholar
  37. 37.
    Zuoren Y, Nicole EW, Jie Z, Sanjay K, Min W, Yang L, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. PNAS. 2010;107(18):8231–6.CrossRefGoogle Scholar
  38. 38.
    Zhang ZW, An Y, Teng CB. The roles of miR-17-92 cluster in mammal development and tumorigenesis. Yi Chuan. 2009;31:1094–100.PubMedCrossRefGoogle Scholar
  39. 39.
    Guo X, Yang C, Qian X, Lei T, Li Y, Shen H, et al. Estrogen receptor α regulates ATM expression through miRNAs in breast cancer. Clin Cancer Res. 2013;19:4994–5002.PubMedCrossRefGoogle Scholar
  40. 40.
    Leivonen SK, Mäkelä R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K, et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene. 2009;28:3926–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Yoshimoto N, Toyama T, Takahashi S, Sugiura H, Endo Y, Iwasa M, et al. Distinct expressions of microRNAs that directly target estrogen receptor α in human breast cancer. Breast Cancer Res Treat. 2011;130:331–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Jonsdottir K, Janssen SR, Da Rosa FC, Gudlaugsson E, Skaland I, Baak JP, et al. Validation of expression patterns for nine miRNAs in 204 lymph-node negative breast cancers. PLoS One. 2012;7:e48692.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Leandro C, Georgios G, Jimmy J, Coombesa RC, Walter L, Paul T, et al. The estrogen receptor-induced microRNA signature regulates itself and its transcriptional response. PNAS. 2009;106(37):15732–7.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Carlos Marino Cabral Calvano Filho
    • 1
    • 2
  • Daniele Carvalho Calvano-Mendes
    • 1
    • 2
    Email author
  • Kátia Cândido Carvalho
    • 1
  • Gustavo Arantes Maciel
    • 1
  • Marcos Desidério Ricci
    • 2
  • Ana Paula Torres
    • 3
  • José Roberto Filassi
    • 2
  • Edmund Chada Baracat
    • 1
    • 2
  1. 1.Laboratório de Ginecologia Molecular e Estrutural—LIM 58, Disciplina de Ginecologia, Faculdade de MedicinaUniversidade de São PauloSão Paulo-SPBrazil
  2. 2.Setor de Mastologia, Disciplina de Ginecologia, Instituto do Câncer do Estado de São Paulo—ICESP, Faculdade de MedicinaUniversidade de São PauloSão Paulo-SPBrazil
  3. 3.Fundação Oncocentro de São PauloSão Paulo-SPBrazil

Personalised recommendations