Tumor Biology

, Volume 35, Issue 8, pp 7587–7594 | Cite as

Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion

  • Feng-qi Nie
  • Quan Zhu
  • Tong-peng Xu
  • Yan-fen Zou
  • Min Xie
  • Ming Sun
  • Rui Xia
  • Kai-hua LuEmail author
Research Article


Long non-coding RNAs (lncRNAs) have emerged as major players in governing fundamental biological processes, and many of which are misregulated in multiple cancers and likely to play a functional role in tumorigenesis. Therefore, identification of cancer-associated lncRNAs and investigation of their biological functions and molecular mechanisms are important for understanding the development and progression of cancer. lncRNA associated with microvascular invasion in HCC (lncRNA MVIH) was found to be generally upregulated in HCC. Moreover, MVIH overexpression could serve as an independent risk factor to predict poor RFS and promote tumor growth and metastasis via activating angiogenesis. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression is unknown. In this study, we found that lncRNA MVIH levels were increased in NSCLC tissues compared with adjacent normal tissues. Its expression level was significantly correlated with TNM stages, tumor size, and lymph node metastasis. Moreover, patients with high levels of MVIH expression had a relatively poor prognosis. Furthermore, knockdown of MVIH expression by siRNA could inhibit cell proliferation and invasion, while ectopic expression of MVIH promoted cell proliferation and invasion in NSCLC cells partly via regulating MMP2 and MMP9 protein expression. Our findings present that increased lncRNA MVIH could be identified as a poor prognostic biomarker in NSCLC and regulate cell proliferation and invasion.


Long non-coding RNA MVIH Poor prognosis Proliferation Invasion 



This work was supported by the National Natural Scientific Foundation of China (no. 81372397) and Health Promotion Project of Jiangsu funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (JX10231801).

Conflict of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi: 10.3322/caac.21166.PubMedCrossRefGoogle Scholar
  2. 2.
    Verdecchia A, Francisci S, Brenner H, Gatta G, Micheli A, Mangone L, et al. Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data. Lancet Oncol. 2007;8(9):784–96. doi: 10.1016/S1470-2045(07)70246-2.PubMedCrossRefGoogle Scholar
  3. 3.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9. doi: 10.1158/0008-5472.CAN-12-2850.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Liu Z, Sun M, Lu K, Liu J, Zhang M, Wu W, et al. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregulation of p21(WAF1/CIP1) expression. PLoS ONE. 2013;8(10):e77293. doi: 10.1371/journal.pone.0077293.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41. doi: 10.1016/j.cell.2009.02.006.PubMedCrossRefGoogle Scholar
  6. 6.
    Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699–712. doi: 10.1038/nrm3679.PubMedCrossRefGoogle Scholar
  7. 7.
    Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46. doi: 10.1016/j.cell.2013.06.020.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. doi: 10.1101/gr.132159.111.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152(6):1308–23. doi: 10.1016/j.cell.2013.02.016.PubMedCrossRefGoogle Scholar
  10. 10.
    Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–307. doi: 10.1016/j.cell.2013.02.012.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7. doi: 10.1038/ng.710.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7. doi: 10.1158/0008-5472.CAN-10-2483.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577–87. doi: 10.1038/onc.2011.621.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu WQ, et al. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer. 2013;13:461. doi: 10.1186/1471-2407-13-461.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology. 2012;56(6):2231–41. doi: 10.1002/hep.25895.PubMedCrossRefGoogle Scholar
  16. 16.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi: 10.1038/nature08975.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956–62. doi: 10.1038/onc.2010.568.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, et al. TGF-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. 101158/1078-0432CCR-13-1455. 2014.Google Scholar
  19. 19.
    Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014. doi: 10.1158/0008-5472.CAN-13-3159.PubMedGoogle Scholar
  20. 20.
    Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, et al. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology. 2013. doi: 10.1002/hep.26740.Google Scholar
  21. 21.
    Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45(11):1392–8. doi: 10.1038/ng.2771.PubMedCrossRefGoogle Scholar
  22. 22.
    Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F, et al. A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog. 2013. doi: 10.1002/mc.22120.Google Scholar
  23. 23.
    Schmidt LH, Spieker T, Koschmieder S, Schaffers S, Humberg J, Jungen D, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 2011;6(12):1984–92. doi: 10.1097/JTO.0b013e3182307eac.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu XH, Liu ZL, Sun M, Liu J, Wang ZX, De W. The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer. 2013;13:464. doi: 10.1186/1471-2407-13-464.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Jones AM, Marzella R, Rocchi M, Hewitt JE. Mapping of the human ribosomal small subunit protein gene RPS24 to the chromosome 10q22-q23 boundary. Genomics. 1997;39(1):121–2. doi: 10.1006/geno.1996.4442.PubMedCrossRefGoogle Scholar
  26. 26.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. doi: 10.1016/j.cell.2010.03.015.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011;48(1):44–53. doi: 10.1016/j.bone.2010.06.007.PubMedCrossRefGoogle Scholar
  28. 28.
    Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34(4):2041–51. doi: 10.1007/s13277-013-0842-8.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Feng-qi Nie
    • 1
  • Quan Zhu
    • 2
  • Tong-peng Xu
    • 1
  • Yan-fen Zou
    • 3
  • Min Xie
    • 4
  • Ming Sun
    • 4
  • Rui Xia
    • 4
  • Kai-hua Lu
    • 1
    Email author
  1. 1.Department of Oncology, First Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Cardiothoracic Surgery, First Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Department of Obstetrics and Gynecology, First Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  4. 4.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations