Tumor Biology

, Volume 35, Issue 7, pp 7105–7113 | Cite as

Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: evidences from in vitro and in vivo studies

  • Juliana I. Santos
  • Ana L. Teixeira
  • Francisca Dias
  • Joaquina Maurício
  • Francisco Lobo
  • António Morais
  • Rui MedeirosEmail author
Research Article


Prostate cancer (PC) is the more frequently diagnosed neoplasia in men in developed countries. The evolution of PC to castration-resistant prostate cancer (CRPC) represents real problems of clinical management, in consequence to the limited therapeutic options. MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in gene expression and function regulation. The increased evidence that miRNAs are involved in cancer development and progression has made them potential biomarkers for cancer diagnosis, prognosis, and aggressiveness. Our purpose was to identify a miRNA expression profile associated with the development of CRPC. We firstly observed a miRNA expression profile differentially expressed between the castration-resistant (CR) PC3 cell line and the hormone-sensitive LnCaP cell line, where miR-7, miR-221, and miR-222 were upregulated in PC3 (11.3-fold increase, P = 0.012; 11.3-fold increase, P = 0.002; 8.6-fold increase, P = 0.002, respectively). We also observed that the trend of miR-1233 expression levels was higher in PC3 (3.7-fold increase, P = 0.057). These miRNAs differentially expressed in vitro were studied in a peripheral whole-blood samples from PC patients. We observed that patients presenting an early CR acquisition (≤20 months) had higher expression levels of miR-7 and miR-221 (P = 0.034 and P = 0.036, respectively). Furthermore, we found that patients diagnosed with high-Gleason score tumors and presenting simultaneous higher miR-7 expression levels have a significant reduce time to CR compared with patients who present lower miR-7 expression levels (11 vs. 51 months, log-rank test P = 0.004). We also found that patients diagnosed with high-Gleason score tumors and higher expression levels of miR-221 have an early CRPC compared to patients with lower miR-221 expression levels (10 vs. 46 months, log-rank test P = 0.012). We observed a significantly lower overall survival in patients with higher peripheral whole-blood expression levels of miR-7 (28 vs. 116 months, log-rank test P = 0.001). Our results suggest that miR-7 and miR-221 peripheral whole-blood expression levels can be potential predictive biomarkers of CRPC development.


Prostate cancer CRPC development Peripheral whole-blood microRNAs miR-7 miR-221 



Prostate cancer


Castration-resistant prostate cancer


Androgen deprivation therapy




Messenger RNAs


Epidermal growth factor receptor


Matrix metalloproteinase


Mammalian target of rapamycin




Epithelial-mesenchymal transition


Metalloproteinase inhibitor 3


Reversion-inducing-cysteine-rich protein with kazal motifs


Renal cell carcinoma


Hypoxia-inducible factor 1-alpha



We would like to thank the Liga Portuguesa Contra o Cancro—Centro Regional do Norte (Portuguese League Against Cancer) and FCT—Fundação para a Ciência e Tecnologia. ALT is a doctoral degree grant holder from FCT (SFRH/BD/47381/2008).

Conflicts of interest



  1. 1.
    Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59:572–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Heidegger I, Massoner P, Eder IE, Pircher A, Pichler R, Aigner F, et al. Novel therapeutic approaches for the treatment of castration-resistant prostate cancer. J Steroid Biochem Mol Biol. 2013;138:248–56.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:3251–5.CrossRefGoogle Scholar
  5. 5.
    Aggarwal R, Ryan CJ. Castration-resistant prostate cancer: targeted therapies and individualized treatment. Oncologist. 2011;16:264–75.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.CrossRefPubMedGoogle Scholar
  7. 7.
    Hessvik NP, Sandvig K, Llorente A: Exosomal miRNAs as biomarkers for prostate cancer. Frontiers in genetics 2013;4Google Scholar
  8. 8.
    Zhu KC, Lu JJ, Xu XL, Sun JM. MicroRNAs in androgen-dependent PCA. Front Biosci. 2013;18:748–55.CrossRefGoogle Scholar
  9. 9.
    Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 2009;69:3356–63.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, et al. The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res: MCR. 2010;8:529–38.CrossRefPubMedGoogle Scholar
  11. 11.
    Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72:1469–77.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27kip1. J Biol Chem. 2007;282:23716–24.CrossRefPubMedGoogle Scholar
  13. 13.
    Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009;27:1712–21.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Cho WCS. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010;42:1273–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Shah MY, Calin GA. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med. 2011;3:56.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O'Brien C, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4:ra41.CrossRefPubMedGoogle Scholar
  17. 17.
    Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O'Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, Newman RJ, Yue P, Bourgon R, Modrusan Z, Stern HM, Warming S, de Sauvage FJ, Amler L, Yeh RF, Dornan D: miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Science signaling 2011;4:pt5Google Scholar
  18. 18.
    Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA. Farace MG: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27kip1. J Biol Chem. 2007;282:23716–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Hassan O, Ahmad A, Sethi S, Sarkar FH. Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol. 2012;5:9.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Zhang C, Zhang J, Hao J, Shi Z, Wang Y, Han L, et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med. 2012;10:119.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR, et al. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res. 2010;70:8822–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Bitting RL, Armstrong AJ. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocrine-Related Cancer. 2013;20:R83–99.CrossRefPubMedGoogle Scholar
  23. 23.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D, et al. Transatlantic Prostate G: molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102:678–84.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, et al. Deregulation of miR-100, miR-99a and miR-199b in tissues and plasma coexists with increased expression of mtor kinase in endometrioid endometrial carcinoma. BMC Cancer. 2012;12:369.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Watanabe R, Wei L, Huang J. mTOR signaling, function, novel inhibitors, and therapeutic targets. J Nucl Med: Off Publ Soc Nucl Med. 2011;52:497–500.Google Scholar
  27. 27.
    Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 2011;6:e25787.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38:1093–101.PubMedGoogle Scholar
  29. 29.
    Williams LV, Veliceasa D, Vinokour E, Volpert OV. miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One. 2013;8:e83991.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Teixeira AL, Ribeiro R, Morais A, Lobo F, Fraga A, Pina F, et al. Combined analysis of EGF+61G>A and TGFB1+869T>C functional polymorphisms in the time to androgen independence and prostate cancer susceptibility. Pharmacogenomics J. 2009;9:341–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene. 2010;29:4947–58.CrossRefPubMedGoogle Scholar
  32. 32.
    Di Lorenzo G, Tortora G, D'Armiento FP, De Rosa G, Staibano S, Autorino R, et al. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2002;8:3438–44.Google Scholar
  33. 33.
    Traish AM, Morgentaler A. Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br J Cancer. 2009;101:1949–56.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Gregory CW, Fei X, Ponguta LA, He B, Bill HM, French FS, et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem. 2004;279:7119–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang J, Zhao H, Gao Y, Zhang W. Secretory miRNArnas as novel cancer biomarkers. Biochim Biophys Acta. 1826;2012:32–43.Google Scholar
  36. 36.
    Calin GA, Croce CM. MicroRNArna signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRefPubMedGoogle Scholar
  37. 37.
    Cho WC. OncomiRrs: tThe discovery and progress of microRNArnas in cancers. Mol Cancer. 2007;6:60.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Rossbach M. Small non-coding rnas RNAs as novel therapeutics. Curr Mol Med. 2010;10:361–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Watahiki A, Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M, et al. MicroRNArnas associated with metastatic prostate cancer. PLoS One. 2011;6:e24950.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Nana-Sinkam SP, Croce CM. MicroRNArnas as therapeutic targets in cancer. Transl Res. 2011;157:216–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Staszel T, Zapala B, Polus A, Sadakierska-Chudy A, Kiec-Wilk B, Stepien E, et al. Role of microRNArnas in endothelial cell pathophysiology. Pol Arch Med Wewn. 2011;121:361–6.PubMedGoogle Scholar
  42. 42.
    Carlsson J, Helenius G, Karlsson MG, Andren O, Klinga-Levan K, Olsson B. Differences in microRNArna expression during tumor development in the transition and peripheral zones of the prostate. BMC Cancer. 2013;13:362.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Lorenzen JM, Thum T. Circulating and urinary microRNArnas in kidney disease. Clin J Am Soc Nephrol: CJASN. 2012;7:1528–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNArna profiling of prostate cancer. J Cancer. 2013;4:350–7.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNArnas: nNew biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897–912.PubMedGoogle Scholar
  46. 46.
    Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, et al. Circulating miRNArnas are correlated with tumor progression in prostate cancer. Int J Cancer J Int Cancer. 2011;128:608–16.CrossRefGoogle Scholar
  47. 47.
    Lewis H, Lance R, Troyer D, Beydoun H, Hadley M, Orians J, Benzine T, Madric K, Semmes OJ, Drake R, Esquela-Kerscher A: mMiRr-888 is an expressed prostatic secretions-derived microRNArna that promotes prostate cell growth and migration. Cell cycle 2013;13.Google Scholar
  48. 48.
    Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, et al. Keratinization-associated miRr-7 and miRr-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECkreck) in oral cancer. J Biol Chem. 2012;287:29261–72.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, et al. Liposomal delivery of microRNArna-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther. 2011;10:1720–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Yu Z, Ni L, Chen D, Zhang Q, Su Z, Wang Y, et al. Identification of miRr-7 as an oncogene in renal cell carcinoma. J Mol Histol. 2013;44:669–77.CrossRefPubMedGoogle Scholar
  51. 51.
    Teixeira AL, Gomes M, Medeiros R. Egfr signaling pathway and related-miRNArnas in age-related diseases: tThe example of miRr-221 and miRr-222. Front Genet. 2012;3:286.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNArna-221/222 confers tamoxifen resistance in breast cancer by targeting p27kip1. J Biol Chem. 2008;283:29897–903.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al. Circulating miRr-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25:1674–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Li W, Guo F, Wang P, Hong S, Zhang C. mMiRr-221/222 confers radioresistance in glioblastoma cells through activating Aakt independent of PTENpten status. Curr Mol Med. 2014;14:185–95.CrossRefPubMedGoogle Scholar
  55. 55.
    Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNArna-221 and microRNArna-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTENpten. BMC Cancer. 2010;10:367.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Teixeira AL, Ferreira M, Silva J, Gomes M, Dias F, Santos JI, Mauricio J, Lobo F, Medeiros R: Higher circulating expression levels of miRr-221 associated with poor overall survival in renal cell carcinoma patients. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013.Google Scholar
  57. 57.
    Dias F, Teixeira AL, Santos JI, Gomes M, Nogueira A, Assis J, et al. Renal cell carcinoma development and miRNArnas: A a possible link to the EGFRegfr pathway. Pharmacogenomics. 2013;14:1793–803.CrossRefPubMedGoogle Scholar
  58. 58.
    Di Lorenzo G, Autorino R, De Laurentiis M, Cindolo L, D'Armiento M, Bianco AR, et al. HERer-2/neu receptor in prostate cancer development and progression to androgen independence. Tumori. 2004;90:163–70.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Juliana I. Santos
    • 1
    • 2
  • Ana L. Teixeira
    • 1
    • 2
  • Francisca Dias
    • 1
    • 2
  • Joaquina Maurício
    • 1
  • Francisco Lobo
    • 1
  • António Morais
    • 1
  • Rui Medeiros
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Molecular Oncology GroupPortuguese Institute of Oncology of PortoPorto 4200-072Portugal
  2. 2.ICBAS, Abel Salazar Institute for the Biomedical SciencesUniversity of PortoPorto 4050-313Portugal
  3. 3.Research DepartmentLPCC-Portuguese League Against Cancer (NRNorte)Porto 4200-177Portugal
  4. 4.CEBIMEDFaculty of Health Sciences of Fernando Pessoa UniversityPorto 4200-150Portugal

Personalised recommendations