Tumor Biology

, Volume 35, Issue 7, pp 7217–7223 | Cite as

Quantitation of rare circulating tumor cells by folate receptor α ligand-targeted PCR in bladder transitional cell carcinoma and its potential diagnostic significance

  • Fuming Qi
  • Yuchen Liu
  • Rongchang Zhao
  • Xiangjun Zou
  • Lei Zhang
  • Jiaqiang Li
  • Yongqiang Wang
  • Feiyang Li
  • Xiaowen Zou
  • Ye Xia
  • Xuliang Wang
  • Li Xing
  • Cailing Li
  • Jingxiao Lu
  • Junlong Tang
  • Fangjian Zhou
  • Chunxiao Liu
  • Yaoting Gui
  • Zhiming Cai
  • Xiaojuan Sun
Research Article

Abstract

Numerous attempts for detection of circulating tumor cells (CTC) have been made to develop reliable assays for early diagnosis of cancers. In this study, we validated the application of folate receptor α (FRα) as the tumor marker to detect CTC through tumor-specific ligand PCR (LT-PCR) and assessed its utility for diagnosis of bladder transitional cell carcinoma (TCC). Immunohistochemistry for FRα was performed on ten bladder TCC tissues. Enzyme-linked immunosorbent assay (ELISA) for FRα was performed on both urine and serum specimens from bladder TCC patients (n = 64 and n = 20, respectively) and healthy volunteers (n = 20 and n = 23, respectively). Western blot analysis and qRT-PCR were performed to confirm the expression of FRα in bladder TCC cells. CTC values in 3-mL peripheral blood were measured in 57 bladder TCC patients, 48 healthy volunteers, and 15 subjects with benign urologic pathologies by the folate receptor α ligand-targeted PCR. We found that FRα protein was overexpressed in both bladder TCC cells and tissues. The levels of FRα mRNA were also much higher in bladder cancer cell lines 5637 and SW780 than those of leukocyte. Values of FRα were higher in both serum and urine specimens of bladder TCC patients than those of control. CTC values were also higher in 3-mL peripheral blood of bladder TCC patients than those of control (median 26.5 Cu/3 mL vs 14.0 Cu/3 mL). Area under the receiver operating characteristic (ROC) curve for bladder TCC detection was 0.819, 95 % CI (0.738–0.883). At the cutoff value of 15.43 Cu/3 mL, the sensitivity and the specificity for detecting bladder cancer are 82.14 and 61.9 %, respectively. We concluded that quantitation of CTCs through FRα ligand-PCR could be a promising method for noninvasive diagnosis of bladder TCC.

Keywords

Bladder transitional cell carcinoma Tumor specific ligand-PCR Circulating tumor cell Folate receptor α 

References

  1. 1.
    Seigel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.CrossRefGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374(9685):239–49.CrossRefPubMedGoogle Scholar
  4. 4.
    Rubben H, Lutzeyer W, Fischer N, Deutz F, Lagrange W, Giani G. Natural history and treatment of low and high risk superficial bladder tumors. J Urol. 1988;139(2):283–5.PubMedGoogle Scholar
  5. 5.
    Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5(9):713–25.CrossRefPubMedGoogle Scholar
  6. 6.
    Shariat SF, Karakiewicz PI, Ashfaq R, Lerner SP, Palapattu GS, Cote RJ, et al. Multiple biomarkers improve prediction of bladder cancer recurrence and mortality in patients undergoing cystectomy. Cancer. 2008;112(2):315–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Vrooman OP, Witjes JA. Molecular markers for detection, surveillance and prognostication of bladder cancer. Int J Urol. 2009;16(3):234–43.CrossRefPubMedGoogle Scholar
  8. 8.
    Duggan BJ, Gray SB, McKnight JJ, Watson CJ, Johnston SR, Williamson KE. Oligoclonality in bladder cancer: the implication for molecular therapies. J Urol. 2004;171(1):419–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Hafner C, Knuechel R, Zanardo L, Dietmaier W, Blaszyk H, Cheville J, et al. Evidence for oligoclonality and tumor spread by intraluminal seeding in multifocal urothelial carcinomas of the upper and lower urinary tract. Oncogene. 2001;20(35):4910–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Veltri RW, Makarov DV. Nucleic acid-based marker approaches to urologic cancers. Urol Oncol. 2006;24(6):510–27.CrossRefPubMedGoogle Scholar
  11. 11.
    Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204.CrossRefPubMedGoogle Scholar
  12. 12.
    Paterlini-Brechot P, Benali NL. Prognostic value of circulating tumor cells in nonmuscle invasive bladder cancer: a cell search analysis. Ann Oncol. 2012;23(9):2352–6.CrossRefGoogle Scholar
  13. 13.
    Mou L, Xu JY, Li W, Lei X, Wu Y, Xu G, et al. Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis. Invest Ophthalmol Vis Sci. 2010;51(1):396–404.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu Y, Huang W, Zhou D, Han Y, Duan Y, Zhang X, et al. Synthesizing oncogenic signal-processing systems that function as both “signal counters” and “signal blockers” in cancer cells. Mol BioSyst. 2013;9(7):1909–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Wu S, Wang Y, Sun L, Zhang Z, Jiang Z, Qin Z, et al. Decreased expression of dual-specificity phosphatase 9 is associated with poor prognosis in clear cell renal cell carcinoma. BMC Cancer. 2011;11:413–20.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Lou J, Ben S, Yang G, Liang X, Wang X, Ni S, et al. Quantification of rare circulating tumor cells in non-small cell lung cancer by ligand-targeted PCR. PLoS One. 2013;8(12):e80458.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Lotan Y, Elias K, Svatek RS, Bagrodia A, Nuss G, Moran B, et al. Bladder cancer screening in a high risk asymptomatic population using a point of care urine based protein tumor marker. J Urol. 2009;182(1):52–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Schmitz-Drager BJ, Tirsar LA, Schmitz-Drager C, Dörsam J, Mellan Z, Bismarck E, et al. Immunocytology in the assessment of patients with asymptomatic hematuria. World J Urol. 2008;26(1):31–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Lotan Y, Roehrborn CG. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses. Urology. 2003;61(1):109–18.CrossRefPubMedGoogle Scholar
  20. 20.
    Sturgeon CM, Duffy MJ, Stenman UH, Lamerz R, Fritsche HA, Gaarenstroom K, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in liver, bladder, cervical, and gastric cancers. Clin Chem. 2010;56(6):e11–48.CrossRefGoogle Scholar
  21. 21.
    Bassi P, De Marco V, De Lisa A, Mancini M, Pinto F, Bertoloni R, et al. Non-invasive diagnostic tests for bladder cancer: a review of the literature. Urol Int. 2005;75(3):193–200.CrossRefPubMedGoogle Scholar
  22. 22.
    Bastacky S, Ibrahim S, Wilczynski SP, Murphy WM. The accuracy of urinary cytology in daily practice. Cancer. 1999;87(3):118–28.CrossRefPubMedGoogle Scholar
  23. 23.
    Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Böhle A, Palou-Redorta J, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol. 2011;59(6):997–1008.CrossRefPubMedGoogle Scholar
  24. 24.
    Stenzl A, Cowan NC, De Santis M, Jakse G, Kuczyk MA, Merseburger AS, et al. The updated EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2011;55(4):815–25.CrossRefGoogle Scholar
  25. 25.
    Patrick V, Bryant W, Steve G, Rosser CJ. Urine-based assays for the detection of bladder cancer. Biomark Med. 2009;3(3):265–74.CrossRefGoogle Scholar
  26. 26.
    Niedworok C, Rembrink V, Hakenberg OW, Börgermann C, Rossi R, Schneider T, et al. The value of urinary cytology in the diagnosis of high grade urothelial tumors. Urologe A. 2009;48(9):1018. 1020–2, 1024.CrossRefPubMedGoogle Scholar
  27. 27.
    Shariat SF, Casella R, Wians Jr FH, Ashfaq R, Balko J, Sulser T, et al. Risk stratification for bladder tumor recurrence, stage and grade by urinary nuclear matrix protein 22 and cytology. Eur Urol. 2004;45(3):304–13.CrossRefPubMedGoogle Scholar
  28. 28.
    van der Aa MN, Steyerberg EW, Sen EF, Zwarthoff EC, Kirkels WJ, van der Kwast TH, et al. Patients’ perceived burden of cystoscopic and urinary surveillance of bladder cancer: a randomized comparison. BJU Int. 2008;101(9):1106–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Kesari D, Kovisman V, Cytron S, Benjamin J. Effects on pain and anxiety of patients viewing their cystoscopy in addition to a detailed explanation: a controlled study. BJU Int. 2003;92(7):751–2.CrossRefPubMedGoogle Scholar
  30. 30.
    Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoecon. 2003;21(18):1315–30.CrossRefGoogle Scholar
  31. 31.
    Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards study design. J Natl Cancer Inst. 2008;100(20):1432–8.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Søreide K. Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research. J Clin Pathol. 2009;62(1):1–5.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Fuming Qi
    • 1
    • 2
    • 3
  • Yuchen Liu
    • 1
    • 2
    • 4
  • Rongchang Zhao
    • 4
    • 7
  • Xiangjun Zou
    • 1
    • 4
  • Lei Zhang
    • 4
    • 6
  • Jiaqiang Li
    • 2
    • 4
  • Yongqiang Wang
    • 4
  • Feiyang Li
    • 4
  • Xiaowen Zou
    • 4
  • Ye Xia
    • 2
    • 4
  • Xuliang Wang
    • 2
    • 4
  • Li Xing
    • 4
    • 6
  • Cailing Li
    • 2
  • Jingxiao Lu
    • 8
  • Junlong Tang
    • 8
  • Fangjian Zhou
    • 5
  • Chunxiao Liu
    • 6
  • Yaoting Gui
    • 2
  • Zhiming Cai
    • 1
    • 4
  • Xiaojuan Sun
    • 8
  1. 1.Department of Urological Surgery, Shenzhen Second People’s HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
  2. 2.Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of UrologyPeking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical CenterShenzhenChina
  3. 3.Shantou University Medical CollegeShantouChina
  4. 4.Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People’s HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
  5. 5.Department of UrologySun Yat-Sen University Cancer CenterGuangzhouChina
  6. 6.Department of UrologyZhujiang Hospital of Southern Medical UniversityGuangzhouChina
  7. 7.Department of Research and DevelopmentGenoSaber Biotech Co., Ltd.ShanghaiChina
  8. 8.Shenzhen Tumor Immuno-gene Therapy Clininical Application Engineering Lab, Biobank of Shenzhen Second People’s HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina

Personalised recommendations