Advertisement

Tumor Biology

, Volume 35, Issue 7, pp 6809–6814 | Cite as

CD 152 gene polymorphisms and risk of osteosarcoma in Chinese population

  • Zhengqi Chang
  • Ruoxian Song
  • Songfeng Xu
  • Ming Xu
  • Xiuchun YuEmail author
Research Article

Abstract

Osteosarcoma has become a health threat for adolescents and young adults. To identify the genetic risk factor for the malignancy is in urgent need. Several studies have investigated the role of CD 152 polymorphisms in osteosarcoma in a sample of Chinese population. However, the association is poorly defined due to lack of a sufficiently large sample. In this study, we performed a meta-analysis of all CD 152 polymorphisms that had been implicated in osteosarcoma to examine the association. We searched the electronic MEDLINE database until December 31, 2013, to identify the studies regarding the association between CD 152 polymorphisms and osteosarcoma. Inclusion criteria were followed in the selection of eligible study. The genotypic and allelic data were collected from all studies included to evaluate the risk of osteosarcoma (odds ratio, OR). We found statistically significant evidence of the studied CD 152 polymorphisms and increased risk of osteosarcoma in homozygous (OR = 1.79, 95 % CI = 1.40–2.29, P = 0.958), recessive (OR = 1.77, 95 % CI = 1.40–2.25, P = 0.899), and allele model (OR = 1.21, 95 % CI = 1.09–1.34, P = 1.000). This increased risk was also revealed in single nucleotide polymorphism (SNP) +49G>A and SNP 326G>A. Our meta-analysis indicates that there may be an association between CD 152 polymorphisms and risk of osteosarcoma in Chinese population. Further validation of the observation is necessary.

Keywords

CD 152 Polymorphism Osteosarcoma 

References

  1. 1.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.Google Scholar
  2. 2.
    Kämmerer PW, Toyoshima T, Schöder F, Kämmerer P, Kuhr K, Brieger J, et al. Association of T-cell regulatory gene polymorphisms with oral squamous cell carcinoma. Oral Oncol. 2010;46(7):543–8.Google Scholar
  3. 3.
    Cozar JM, Romero JM, Aptsiauri N, Vazquez F, Vilchez JR, Tallada M, et al. High incidence of CTLA-4 AA (CT60) polymorphism in renal cell cancer. Hum Immunol. 2007;68(8):698–704.Google Scholar
  4. 4.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.CrossRefPubMedGoogle Scholar
  5. 5.
    Sansom DM, Walker LS. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev. 2006;212:131–48.CrossRefPubMedGoogle Scholar
  6. 6.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100(14):8372–7.Google Scholar
  7. 7.
    Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol. 2005;175(11):7746–54.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A. 2003;100(8):4712–7.Google Scholar
  9. 9.
    Gurney JG, Swensen AR, Bulterys M. Malignant bone tumors. In: Ries LAG, Smith MA, Gurney JG, editors. Cancer incidence and survival among children and adolescents. Bethesda: National Cancer Institute; 1999. p. 99–110. NIH Pub. No. 99–4649.Google Scholar
  10. 10.
    Dorfman HD, Czerniak B. Bone cancers. Cancer. 1995;75(1 Suppl):203–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115(7):1531–43.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Liu Y, He Z, Feng D, Shi G, Gao R, Wu X, et al. Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to osteosarcoma. DNA Cell Biol. 2011;30(12):1051–5.Google Scholar
  13. 13.
    Wang W, Wang J, Song H, Liu J, Song B, Cao X. Cytotoxic T-lymphocyte antigen-4 + 49G/A polymorphism is associated with increased risk of osteosarcoma. Genet Test Mol Biomarkers. 2011;15(7–8):503–6.Google Scholar
  14. 14.
    He J, Wang J, Wang D, Dai S, Yv T, Chen P, et al. Association between CTLA-4 genetic polymorphisms and susceptibility to osteosarcoma in Chinese Han population. Endocrine. 2014;45(2):325–30.Google Scholar
  15. 15.
    Yu F, Miao J. Significant association between cytotoxic T lymphocyte antigen 4 + 49G > A polymorphism and risk of malignant bone tumors. Tumour Biol. 2013;34(6):3371–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.PubMedGoogle Scholar
  17. 17.
    Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRefGoogle Scholar
  18. 18.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefPubMedGoogle Scholar
  19. 19.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRefPubMedGoogle Scholar
  21. 21.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.Google Scholar
  22. 22.
    Yang S, Wang C, Zhou Y, Sun G, Zhu D, Gao S. Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to Ewing's sarcoma. Genet Test Mol Biomarkers. 2012;16(10):1236–40.Google Scholar
  23. 23.
    Feng D, Yang X, Li S, Liu T, Wu Z, Song Y, et al. Cytotoxic T-lymphocyte antigen-4 genetic variants and risk of Ewing's sarcoma. Genet Test Mol Biomarkers. 2013;17(6):458–63.Google Scholar
  24. 24.
    Erfani N, Razmkhah M, Talei AR, Pezeshki AM, Doroudchi M, Monabati A, et al. Cytotoxic T lymphocyte antigen-4 promoter variants in breast cancer. Cancer Genet Cytogenet. 2006;165(2):114–20.Google Scholar
  25. 25.
    Jaiswal PK, Singh V, Mittal RD. Cytotoxic T lymphocyte antigen 4 (CTLA4) gene polymorphism with bladder cancer risk in North Indian population. Mol Biol Rep. 2014;41(2):799–807.CrossRefPubMedGoogle Scholar
  26. 26.
    Qiu H, Tang W, Yin P, Cheng F, Wang L. Cytotoxic T-lymphocyte-associated antigen-4 polymorphisms and susceptibility to cervical cancer: a meta-analysis. Mol Med Rep. 2013;8(6):1785–94.Google Scholar
  27. 27.
    Harper K, Balzano C, Rouvier E, Mattéi MG, Luciani MF, Golstein P. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol. 1991;147(3):1037–44.Google Scholar
  28. 28.
    Seder RA, Germain RN, Linsley PS, Paul WE. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production. J Exp Med. 1994;179(1):299–304.Google Scholar
  29. 29.
    Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. Pillars article: CTLA-4 can function as a negative regulator of T cell activation. J Immunol. 2011;187(7):3466–74.Google Scholar
  30. 30.
    Brunner MC, Chambers CA, Chan FK, Hanke J, Winoto A, Allison JP. CTLA-4-mediated inhibition of early events of T cell proliferation. J Immunol. 1999;162(10):5813–20.Google Scholar
  31. 31.
    Bai XF, Liu J, May KF Jr, Guo Y, Zheng P, Liu Y. B7-CTLA4 interaction promotes cognate destruction of tumor cells by cytotoxic T lymphocytes in vivo. Blood. 2002;99(8):2880–9.Google Scholar
  32. 32.
    Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol. 2001;19:225–52.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Zhengqi Chang
    • 1
  • Ruoxian Song
    • 1
  • Songfeng Xu
    • 1
  • Ming Xu
    • 1
  • Xiuchun Yu
    • 1
    Email author
  1. 1.Department of OrthopedicsGeneral Hospital of Jinan Military Commanding RegionJinanChina

Personalised recommendations