Tumor Biology

, Volume 35, Issue 7, pp 6373–6381 | Cite as

Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A

  • Fernanda WisnieskiEmail author
  • Danielle Queiroz Calcagno
  • Mariana Ferreira Leal
  • Elizabeth Suchi Chen
  • Carolina Oliveira Gigek
  • Leonardo Caires Santos
  • Thaís Brilhante Pontes
  • Lucas Trevizani Rasmussen
  • Spencer Luiz Marques Payão
  • Paulo Pimentel Assumpção
  • Laércio Gomes Lourenço
  • Sâmia Demachki
  • Ricardo Artigiani
  • Rommel Rodríguez Burbano
  • Marília Cardoso Smith
Research Article


Gastric cancer is still the second leading cause of cancer-related death worldwide, even though its incidence and mortality have declined over the recent few decades. Epigenetic control using histone deacetylase inhibitors, such as trichostatin A (TSA), is a promising cancer therapy. This study aimed to assess the messenger RNA (mRNA) levels of three histone deacetylases (HDAC1, HDAC2, and HDAC3), two histone acetyltransferases (GCN5 and PCAF), and two possible targets of these histone modifiers (MYC and CDKN1A) in 50 matched pairs of gastric tumors and corresponding adjacent nontumors samples from patients with gastric adenocarcinoma, as well as their correlations and their possible associations with clinicopathological features. Additionally, we evaluated whether these genes are sensitive to TSA in gastric cancer cell lines. Our results demonstrated downregulation of HDAC1, PCAF, and CDKN1A in gastric tumors compared with adjacent nontumors (P < 0.05). On the other hand, upregulation of HDAC2, GCN5, and MYC was observed in gastric tumors compared with adjacent nontumors (P < 0.05). The mRNA level of MYC was correlated to HDAC3 and GCN5 (P < 0.05), whereas CDKN1A was correlated to HDAC1 and GCN5 (P < 0.05 and P < 0.01, respectively). In addition, the reduced expression of PCAF was associated with intestinal-type gastric cancer (P = 0.03) and TNM stages I/II (P = 0.01). The increased expression of GCN5 was associated with advanced stage gastric cancer (P = 0.02) and tumor invasion (P = 0.03). The gastric cell lines treated with TSA showed different patterns of histone deacetylase and acetyltransferase mRNA expression, downregulation of MYC, and upregulation of CDKN1A. Our findings suggest that alteration of histone modifier genes play an important role in gastric carcinogenesis, contributing to MYC and CDKN1A deregulation. In addition, all genes studied here are modulated by TSA, although this modulation appears to be dependent of the genetic background of the cell line.


Gastric cancer Acetylation Histone acetyltransferase Histone deacetylase Gene expression 



Gastric cancer


Histone acetyltransferases


Histone deacetylases


(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RQ, Relative quantification


Reverse transcription quantitative polymerase chain reaction




Trichostatin A



This paper was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; to MACS, FW, DQC, MFL, and TBP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; to MCS and RRB), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; to COG).

Conflicts of interest



  1. 1.
    Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J Clin. 2001;51(1):15–36.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin. 2004;54(1):8–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Russell MC, Mansfield PF. Surgical approaches to gastric cancer. J Surg Oncol. 2013;107(3):250–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Azad N, Zahnow CA, Rudin CM, Baylin SB. The future of epigenetic therapy in solid tumours-lessons from the past. Nat Rev Clin Oncol. 2013;10(5):256–66.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep. 2003;4(10):944–7.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1(1):19–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Dangond F, Gullans SR. Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem Biophys Res Commun. 1998;247(3):833–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Marmorstein R. Structure and function of histone acetyltransferases. Cell Mol Life Sci. 2001;58(5–6):693–703.CrossRefPubMedGoogle Scholar
  9. 9.
    Liby P, Kostrouchova M, Pohludka M, Yilma P, Hrabal P, Sikora J, et al. Elevated and deregulated expression of HDAC3 in human astrocytic glial tumours. Folia Biol (Praha). 2006;52(1–2):21–33.Google Scholar
  10. 10.
    Armas-Pineda C, Arenas-Huertero F, Perezpenia-Diazconti M. Chico-Ponce de Leon F, Sosa-Sainz G, Lezama P, Recillas-Targa F. Expression of PCAF, p300 and Gcn5 and more highly acetylated histone H4 in pediatric tumors. J Exp Clin Cancer Res. 2007;26(2):269–76.PubMedGoogle Scholar
  11. 11.
    Xie HJ, Noh JH, Kim JK, Jung KH, Eun JW, Bae HJ, et al. HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer. PLoS ONE. 2012;7(4):e34265.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Jung KH, Noh JH, Kim JK, Eun JW, Bae HJ, Xie HJ, et al. HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. J Cell Biochem. 2012;113(6):2167–77.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen L, Wei T, Si X, Wang Q, Li Y, Leng Y, Deng A, Chen J, Wang G, Zhu S, Kang J. Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of E2F1, Cyclin D1 and Cyclin E1 expression. J Biol Chem. 2013.Google Scholar
  14. 14.
    Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92(12):1300–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim JK, Noh JH, Eun JW, Jung KH, Bae HJ, Shen Q, et al. Targeted inactivation of HDAC2 restores p16INK4a activity and exerts antitumor effects on human gastric cancer. Mol Cancer Res. 2013;11(1):62–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Sakuraba K, Yokomizo K, Shirahata A, Goto T, Saito M, Ishibashi K, et al. TIP60 as a potential marker for the malignancy of gastric cancer. Anticancer Res. 2011;31(1):77–9.PubMedGoogle Scholar
  17. 17.
    Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R, et al. Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta. 2013;1833(3):663–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu T, Kuljaca S, Tee A, Marshall GM. Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev. 2006;32(3):157–65.CrossRefPubMedGoogle Scholar
  19. 19.
    Suzuki T, Yokozaki H, Kuniyasu H, Hayashi K, Naka K, Ono S, et al. Effect of trichostatin A on cell growth and expression of cell cycle- and apoptosis-related molecules in human gastric and oral carcinoma cell lines. Int J Cancer. 2000;88(6):992–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu ZQ, Zhang R, Chao C, Zhang JF, Zhang YQ. Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell. Chin Med J (Engl). 2007;120(23):2112–8.Google Scholar
  21. 21.
    Zou XM, Li YL, Wang H, Cui W, Li XL, Fu SB, et al. Gastric cancer cell lines induced by trichostatin A. World J Gastroenterol. 2008;14(30):4810–5.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Zhang X, Yashiro M, Ren J, Hirakawa K. Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep. 2006;16(3):563–8.PubMedGoogle Scholar
  23. 23.
    Washington K. 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol. 2010;17(12):3077–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Scholte GH, van Doorn LJ, Quint WG, Lindeman J. Polymerase chain reaction for the detection of Helicobacter pylori in formaldehyde-sublimate fixed, paraffin-embedded gastric biopsies. Diagn Mol Pathol. 1997;6(4):238–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Leal MF, Nascimento JL M d, da Silva CE, Vita Lamarao MF, Calcagno DQ, Khayat AS, et al. Establishment and conventional cytogenetic characterization of three gastric cancer cell lines. Cancer Genet Cytogenet. 2009;195(1):85–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Wisnieski F, Calcagno DQ, Leal MF, Dos Santos LC, Gigek Cde O, Chen ES, Pontes TB, Assumpcao PP, de Assumpcao MB, Demachki S, Burbano RR, Smith Mde A. Reference genes for quantitative RT-PCR data in gastric tissues and cell lines. World J Gastroenterol.19(41):7121-8.Google Scholar
  27. 27.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego). 2001;25(4):402–8.CrossRefGoogle Scholar
  29. 29.
    Jin KL, Pak JH, Park JY, Choi WH, Lee JY, Kim JH, et al. Expression profile of histone deacetylases 1, 2 and 3 in ovarian cancer tissues. J Gynecol Oncol. 2008;19(3):185–90.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Xu X, Jin H, Liu Y, Liu L, Wu Q, Guo Y, et al. The expression patterns and correlations of claudin-6, methy-CpG binding protein 2, DNA methyltransferase 1, histone deacetylase 1, acetyl-histone H3 and acetyl-histone H4 and their clinicopathological significance in breast invasive ductal carcinomas. Diagn Pathol. 2012;7:33.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Niegisch G, Knievel J, Koch A, Hader C, Fischer U, Albers P, Schulz WA. Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol Oncol. 2012.Google Scholar
  32. 32.
    Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY, et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005;113(4):264–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, Hosoi F, et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007;18(4):769–74.PubMedGoogle Scholar
  34. 34.
    Mutze K, Langer R, Becker K, Ott K, Novotny A, Luber B, et al. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann Surg Oncol. 2010;17(12):3336–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics. 2006;7:90.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L, et al. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood. 2013;121(17):3459–68.CrossRefPubMedGoogle Scholar
  37. 37.
    Stivala LA, Cazzalini O, Prosperi E. The cyclin-dependent kinase inhibitor p21CDKN1A as a target of anti-cancer drugs. Current cancer drug targets.12(2):85-96.Google Scholar
  38. 38.
    Do Nascimento Borges B, Burbano RM, Harada ML. Absence of CIP1/KIP1 hypermethylation in gastric cancer patients from Northern Brazil. In vivo (Athens, Greece).24(4):579-82.Google Scholar
  39. 39.
    Calcagno DQ, Leal MF, Taken SS, Assumpcao PP, Demachki S, Smith Mde A, et al. Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. Anticancer Res. 2005;25(6B):4069–74.PubMedGoogle Scholar
  40. 40.
    Burbano RR, Assumpcao PP, Leal MF, Calcagno DQ, Guimaraes AC, Khayat AS, et al. C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res. 2006;26(4B):2909–14.PubMedGoogle Scholar
  41. 41.
    Assumpcao PP, Ishak G, Chen ES, Takeno SS, Leal MF, Guimaraes AC, et al. Numerical aberrations of chromosome 8 detected by conventional cytogenetics and fluorescence in situ hybridization in individuals from northern Brazil with gastric adenocarcinoma. Cancer Genet Cytogenet. 2006;169(1):45–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Calcagno DQ, Leal MF, Seabra AD, Khayat AS, Chen ES, Demachki S, et al. de Arruda Cardoso Smith M, Burbano RR. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006;12(38):6207–11.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Calcagno DQ, Leal MF, Assumpcao PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008;14(39):5962–8.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Costa Raiol LC, Figueira Silva EC, Mendes da Fonseca D, Leal MF, Guimaraes AC, Calcagno DQ, et al. Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet Cytogenet. 2008;181(1):31–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Calcagno DQ, Guimaraes AC, Leal MF, Seabra AD, Khayat AS, Pontes TB, et al. MYC insertions in diffuse-type gastric adenocarcinoma. Anticancer Res. 2009;29(7):2479–83.PubMedGoogle Scholar
  46. 46.
    Calcagno DQ, Leal MF, Demachki S, Araujo MT, Freitas FW, Oliveira e Souza D, et al. MYC in gastric carcinoma and intestinal metaplasia of young adults. Cancer Genet Cytogenet. 2010;202(1):63–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Calcagno DQ, Freitas VM, Leal MF, de Souza CR, Demachki S, Montenegro R, Assumpcao PP, Khayat AS, Smith Mde A, dos Santos AK, Burbano RR. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC gastroenterology.13:141.Google Scholar
  48. 48.
    Kurland JF, Tansey WP. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 2008;68(10):3624–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN. Myc influences global chromatin structure. EMBO J. 2006;25(12):2723–34.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 2007;26(37):5341–57.CrossRefPubMedGoogle Scholar
  51. 51.
    Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA, White RJ. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci U S A. 2007;104(38):14917–22.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    de Souza CR, Leal MF, Calcagno DQ, Costa Sozinho EK, Borges Bdo N, Montenegro RC, et al. de Arruda Cardoso Smith M, Burbano RR. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS One. 2013;8(5):e64420.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ, et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol. 2004;24(24):10826–34.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998;12(18):2831–41.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19(2):1202–9.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y, et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell. 1999;4(5):725–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Schiltz RL, Nakatani Y. The PCAF acetylase complex as a potential tumor suppressor. Biochim Biophys Acta. 2000;1470(2):M37–53.PubMedGoogle Scholar
  58. 58.
    Ying MZ, Wang JJ, Li DW, Yu GZ, Wang X, Pan J, Chen Y, He MX. The p300/CBP associated factor: is frequently downregulated in intestinal-type gastric carcinoma and constitutes a biomarker for clinical outcome. Cancer Biol Ther. 2010;9(4).Google Scholar
  59. 59.
    Tahara E. Genetic pathways of two types of gastric cancer. IARC Sci Publ. 2004;157:327–49.PubMedGoogle Scholar
  60. 60.
    Leal MF, Calcagno DQ. Borges da Costa Jde F, Silva TC, Khayat AS, Chen ES, Assumpcao PP, de Arruda Cardoso Smith M, Burbano RR. MYC, TP53, and chromosome 17 copy-number alterations in multiple gastric cancer cell lines and in their parental primary tumors. J Biomed Biotechnol. 2011;2011:631268.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Gray SG, Ekstrom TJ. Effects of cell density and trichostatin A on the expression of HDAC1 and p57Kip2 in Hep 3B cells. Biochem Biophys Res Commun. 1998;245(2):423–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther. 2003;2(2):151–63.PubMedGoogle Scholar
  63. 63.
    Spiegel S, Milstien S, Grant S. Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. Oncogene.31(5):537-51.Google Scholar
  64. 64.
    Senese S, Zaragoza K, Minardi S, Muradore I, Ronzoni S, Passafaro A, et al. Role for histone deacetylase 1 in human tumor cell proliferation. Mol Cell Biol. 2007;27(13):4784–95.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Schuettengruber B, Simboeck E, Khier H, Seiser C. Autoregulation of mouse histone deacetylase 1 expression. Mol Cell Biol. 2003;23(19):6993–7004.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res. 2001;262(2):75–83.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Fernanda Wisnieski
    • 1
    Email author
  • Danielle Queiroz Calcagno
    • 1
    • 5
  • Mariana Ferreira Leal
    • 1
    • 2
  • Elizabeth Suchi Chen
    • 1
  • Carolina Oliveira Gigek
    • 1
  • Leonardo Caires Santos
    • 1
  • Thaís Brilhante Pontes
    • 1
  • Lucas Trevizani Rasmussen
    • 3
  • Spencer Luiz Marques Payão
    • 4
  • Paulo Pimentel Assumpção
    • 5
  • Laércio Gomes Lourenço
    • 6
  • Sâmia Demachki
    • 5
  • Ricardo Artigiani
    • 7
  • Rommel Rodríguez Burbano
    • 8
  • Marília Cardoso Smith
    • 1
  1. 1.Disciplina de Genética, Departamento de Morfologia e GenéticaUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Departamento de Ortopedia e TraumatologiaUniversidade Federal de São PauloSão PauloBrazil
  3. 3.Pro-Reitoria de Pesquisa e Pós-GraduaçãoUniversidade do Sagrado CoraçãoBauruBrazil
  4. 4.Departamento de Genética e Biologia Molecular, HemocentroFaculdade de Medicina de MaríliaMaríliaBrazil
  5. 5.Núcleo de Pesquisa em Oncologia, Hospital João de Barros BarretoUniversidade Federal do ParáBelémBrazil
  6. 6.Disciplina de Gastroenterologia Cirúrgica, Departamento de CirurgiaUniversidade Federal de São PauloSão PauloBrazil
  7. 7.Departamento de PatologiaUniversidade Federal de São PauloSão PauloBrazil
  8. 8.Laboratório de Citogenética Humana, Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil

Personalised recommendations