Tumor Biology

, Volume 35, Issue 6, pp 6073–6082 | Cite as

SUZ12 is involved in progression of non-small cell lung cancer by promoting cell proliferation and metastasis

  • Chunhua Liu
  • Xuefei Shi
  • Li Wang
  • Ying Wu
  • Feiyan Jin
  • Cuiqing Bai
  • Yong SongEmail author
Research Article


The suppressor of zeste-12 protein (SUZ12), a core component of Polycomb repressive complex 2 (PRC2), is implicated in transcriptional silencing by generating di- and tri-methylation of lysine 27 on histone H3 (H3K27Me3). Although SUZ12 is known to be of great importance in several human cancer tumorigenesis, limited data are available on the expression profile and functional role of SUZ12 in non-small cell lung cancer (NSCLC). Here, we determined the expression level of SUZ12 in 40 paired clinical NSCLC tissues and adjacent normal tissues by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that SUZ12 was anomalously expressed in NSCLC tissues compared to adjacent noncancerous tissues (P < 0.05) and was highly correlated to tumor size, lymph node metastasis, and clinical stages (P < 0.05). Additionally, siRNA-mediated knockdown of SUZ12 could inhibit tumor cell growth, migration, and invasion, indicating that SUZ12 might function as an oncogene in NSCLC initiation and progression. Furthermore, we found that SUZ12 silencing significantly reduced the expression levels of transcription factor transcription factor E2F1 (E2F1) as well as potential metastasis promoters Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) and roundabout homolog 1 (ROBO1) through Western blot analysis. Altogether, we provide evidences suggesting that SUZ12 is an oncogene in NSCLC and can regulate NSCLC cells proliferation and metastasis partly via reducing E2F1, ROCK1, and ROBO1. Thus, SUZ12 may represent a new potential diagnostic marker for NSCLC and may be a novel therapeutic target for NSCLC intervention.


SUZ12 NSCLC Proliferation Metastasis 



Non-small cell lung cancer


Polycomb repressive complex 2


Quantitative reverse-transcription polymerase chain reaction


American Cancer Society


The enhancer of zeste protein-2


The suppressor of zeste-12 protein


The extra sex combs protein


Small interfering RNAs


Standard deviation


Human bronchial epithelial cell


Transcription factor E2F1


Rho-associated, coiled-coil-containing protein kinase 1


Roundabout homolog 1



This work was supported by grants from the National Natural Science Foundation of China (no. 81170064) and the Natural Science Foundation of China (no. 81302032). We apologize to all researchers whose relevant contributions were not cited due to space limitations.

Conflict of interest



  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49. doi: 10.3322/caac.20006.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi: 10.3322/caac.21166.CrossRefPubMedGoogle Scholar
  3. 3.
    Wu YL, Zhou Q. Clinical trials and biomarker research on lung cancer in China. Expert Opin Ther Targets. 2012;16 Suppl 1:S45–50. doi: 10.1517/14728222.2011.630663.CrossRefPubMedGoogle Scholar
  4. 4.
    Lazar V, Suo C, Orear C, van den Oord J, Balogh Z, Guegan J, et al. Integrated molecular portrait of non-small cell lung cancers. BMC Med Genomics. 2013;6:53. doi: 10.1186/1755-8794-6-53.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Koudelakova V, Kneblova M, Trojanec R, Drabek J, Hajduch M. Non-small cell lung cancer—genetic predictors. Biomed Pap Med Fac Univ Palacky Olomouc Czechoslovakia. 2013;157(2):125–36. doi: 10.5507/bp.2013.034.Google Scholar
  6. 6.
    Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367–80. doi: 10.1056/NEJMra0802714.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou Q, Zhang XC, Chen ZH, Yin XL, Yang JJ, Xu CR, et al. Relative abundance of EGFR mutations predicts benefit from gefitinib treatment for advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(24):3316–21. doi: 10.1200/jco.2010.33.3757.CrossRefGoogle Scholar
  8. 8.
    Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53. doi: 10.1038/nature04733.CrossRefPubMedGoogle Scholar
  9. 9.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science (New York, NY). 2002;298(5595):1039–43. doi: 10.1126/science.1076997.CrossRefGoogle Scholar
  10. 10.
    Koyanagi M, Baguet A, Martens J, Margueron R, Jenuwein T, Bix M. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J Biol Chem. 2005;280(36):31470–7. doi: 10.1074/jbc.M504766200.CrossRefPubMedGoogle Scholar
  11. 11.
    Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23(20):4061–71. doi: 10.1038/sj.emboj.7600402.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439(7078):871–4. doi: 10.1038/nature04431.CrossRefPubMedGoogle Scholar
  13. 13.
    Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A, Dave N, et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol. 2008;28(15):4772–81. doi: 10.1128/mcb.00323-08.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010;39(5):761–72. doi: 10.1016/j.molcel.2010.08.013.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer cell. 2007;11(6):513–25. doi: 10.1016/j.ccr.2007.04.009.CrossRefPubMedGoogle Scholar
  16. 16.
    Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(2):268–73. doi: 10.1200/jco.2005.01.5180.CrossRefGoogle Scholar
  17. 17.
    Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT. EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate. 2007;67(5):547–56. doi: 10.1002/pros.20550.CrossRefPubMedGoogle Scholar
  18. 18.
    Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;100(20):11606–11. doi: 10.1073/pnas.1933744100.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Saramaki OR, Tammela TL, Martikainen PM, Vessella RL, Visakorpi T. The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosom Cancer. 2006;45(7):639–45. doi: 10.1002/gcc.20327.CrossRefPubMedGoogle Scholar
  20. 20.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9. doi: 10.1038/nature01075.CrossRefPubMedGoogle Scholar
  21. 21.
    Li H, Cai Q, Wu H, Vathipadiekal V, Dobbin ZC, Li T, et al. SUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRK. Mol Cancer Res. 2012;10(11):1462–72. doi: 10.1158/1541-7786.mcr-12-0335.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Martin-Perez D, Sanchez E, Maestre L, Suela J, Vargiu P, Di Lisio L, et al. Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. Am J Pathol. 2010;177(2):930–42. doi: 10.2353/ajpath.2010.090769.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Hallstrom TC, Mori S, Nevins JR. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer cell. 2008;13(1):11–22. doi: 10.1016/j.ccr.2007.11.031.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Saito M, Helin K, Valentine MB, Griffith BB, Willman CL, Harlow E, et al. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line. Genomics. 1995;25(1):130–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E. Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer. 1999;81(4):535–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang SY, Liu SC, Al-Saleem LF, Holloran D, Babb J, Guo X, et al. E2F-1: a proliferative marker of breast neoplasia. Cancer Epidemiol Biomarkers Prev. 2000;9(4):395–401.PubMedGoogle Scholar
  27. 27.
    Squazzo SL, O'Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 2006;16(7):890–900. doi: 10.1101/gr.5306606.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Evangelou K, Kotsinas A, Mariolis-Sapsakos T, Giannopoulos A, Tsantoulis PK, Constantinides C, et al. E2F-1 overexpression correlates with decreased proliferation and better prognosis in adenocarcinomas of Barrett oesophagus. J Clin Pathol. 2008;61(5):601–5. doi: 10.1136/jcp.2007.050963.CrossRefPubMedGoogle Scholar
  29. 29.
    Kwong RA, Nguyen TV, Bova RJ, Kench JG, Cole IE, Musgrove EA, et al. Overexpression of E2F-1 is associated with increased disease-free survival in squamous cell carcinoma of the anterior tongue. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(10 Pt 1):3705–11.Google Scholar
  30. 30.
    Lee J, Park CK, Park JO, Lim T, Park YS, Lim HY, et al. Impact of E2F-1 expression on clinical outcome of gastric adenocarcinoma patients with adjuvant chemoradiation therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(1):82–8. doi: 10.1158/1078-0432.ccr-07-0612.CrossRefGoogle Scholar
  31. 31.
    Moller MB, Kania PW, Ino Y, Gerdes AM, Nielsen O, Louis DN, et al. Frequent disruption of the RB1 pathway in diffuse large B cell lymphoma: prognostic significance of E2F-1 and p16INK4A. Leukemia. 2000;14(5):898–904.CrossRefPubMedGoogle Scholar
  32. 32.
    Rabbani F, Richon VM, Orlow I, Lu ML, Drobnjak M, Dudas M, et al. Prognostic significance of transcription factor E2F-1 in bladder cancer: genotypic and phenotypic characterization. J Natl Cancer Inst. 1999;91(10):874–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Saiz AD, Olvera M, Rezk S, Florentine BA, McCourty A, Brynes RK. Immunohistochemical expression of cyclin D1, E2F-1, and Ki-67 in benign and malignant thyroid lesions. J Pathol. 2002;198(2):157–62. doi: 10.1002/path.1185.CrossRefPubMedGoogle Scholar
  34. 34.
    Huang CL, Liu D, Nakano J, Yokomise H, Ueno M, Kadota K, et al. E2F1 overexpression correlates with thymidylate synthase and survivin gene expressions and tumor proliferation in non small-cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(23):6938–46. doi: 10.1158/1078-0432.ccr-07-1539.CrossRefGoogle Scholar
  35. 35.
    Gilkes DM, Xiang L, Lee SJ, Chaturvedi P, Hubbi ME, Wirtz D, et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci U S A. 2014;111(3):E384–93. doi: 10.1073/pnas.1321510111.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Shin JY, Kim YI, Cho SJ, Lee MK, Kook MC, Lee JH, et al. MicroRNA 135a Suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PloS One. 2014;9(1):e85205. doi: 10.1371/journal.pone.0085205.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Wang J, Liu XH, Yang ZJ, Xie B, Zhong YS. The effect of ROCK-1 activity change on the adhesive and invasive ability of Y79 retinoblastoma cells. BMC Cancer. 2014;14(1):89. doi: 10.1186/1471-2407-14-89.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Zhang C, Zhang S, Zhang Z, He J, Xu Y, Liu S. ROCK has a crucial role in regulating prostate tumor growth through interaction with c-Myc. Oncogene. 2013. doi: 10.1038/onc.2013.505.Google Scholar
  39. 39.
    Hahmann C, Schroeter T. Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell Mol Life Sci. 2010;67(2):171–7. doi: 10.1007/s00018-009-0189-x.CrossRefPubMedGoogle Scholar
  40. 40.
    Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG. The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol. 2008;33(3):585–93.PubMedGoogle Scholar
  41. 41.
    Lin SL, Chang D, Ying SY. Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis. 2007;28(2):310–20. doi: 10.1093/carcin/bgl134.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu S, Goldstein RH, Scepansky EM, Rosenblatt M. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res. 2009;69(22):8742–51. doi: 10.1158/0008-5472.can-09-1541.CrossRefPubMedGoogle Scholar
  43. 43.
    Lochhead PA, Wickman G, Mezna M, Olson MF. Activating ROCK1 somatic mutations in human cancer. Oncogene. 2010;29(17):2591–8. doi: 10.1038/onc.2010.3.CrossRefPubMedGoogle Scholar
  44. 44.
    Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 2009;28(1–2):65–76. doi: 10.1007/s10555-008-9170-7.CrossRefPubMedGoogle Scholar
  45. 45.
    Guan H, Zu G, Xie Y, Tang H, Johnson M, Xu X, et al. Neuronal repellent Slit2 inhibits dendritic cell migration and the development of immune responses. J Immunol (Baltimore, Md : 1950). 2003;171(12):6519–26.CrossRefGoogle Scholar
  46. 46.
    Bhat KM, Gaziova I, Krishnan S. Regulation of axon guidance by slit and netrin signaling in the Drosophila ventral nerve cord. Genetics. 2007;176(4):2235–46. doi: 10.1534/genetics.107.075085.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Dickson BJ, Gilestro GF. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol. 2006;22:651–75. doi: 10.1146/annurev.cellbio.21.090704.151234.CrossRefPubMedGoogle Scholar
  48. 48.
    Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell. 1998;92(2):205–15.CrossRefPubMedGoogle Scholar
  49. 49.
    Singh RK, Indra D, Mitra S, Mondal RK, Basu PS, Roy A, et al. Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. Hum Genet. 2007;122(1):71–81. doi: 10.1007/s00439-007-0375-6.CrossRefPubMedGoogle Scholar
  50. 50.
    Narayan G, Goparaju C, Arias-Pulido H, Kaufmann AM, Schneider A, Durst M, et al. Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol Cancer. 2006;5:16. doi: 10.1186/1476-4598-5-16.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Prasad A, Paruchuri V, Preet A, Latif F, Ganju RK. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem. 2008;283(39):26624–33. doi: 10.1074/jbc.M800679200.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Chunhua Liu
    • 1
  • Xuefei Shi
    • 1
  • Li Wang
    • 1
  • Ying Wu
    • 1
  • Feiyan Jin
    • 2
  • Cuiqing Bai
    • 1
  • Yong Song
    • 1
    Email author
  1. 1.Department of Respiratory Medicine, Jinling HospitalNanjing University School of MedicineNanjingChina
  2. 2.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina

Personalised recommendations