Advertisement

Tumor Biology

, Volume 35, Issue 6, pp 6021–6028 | Cite as

miR-22 targets the 3′ UTR of HMGB1 and inhibits the HMGB1-associated autophagy in osteosarcoma cells during chemotherapy

  • Xuefeng Li
  • Sijia Wang
  • Yan Chen
  • Guifeng Liu
  • Xiaoyu Yang
Research Article

Abstract

Osteosarcoma is the most common malignant bone tumor for children and adolescents, and the frequent acquisition of drug-resistant phenotypes and the occurrence of “secondary malignancies” are often associated with chemotherapy and are significant obstacles to achieving favorable outcomes. Thus, it is urgent to identify the molecular mechanisms underlying the chemoresistance of osteosarcoma. In this study, we showed that miR-22 and high-mobility group box 1 (HMGB1) were deregulated in osteosarcoma cells, post-chemotherapy; the upregulated HMGB1 mediated autophagy and contributed to chemotherapy resistance in osteosarcoma in vitro. However, possibly as a compensatory effect, miR-22 was also upregulated during the chemotherapy, and the overexpressed miR-22 targeted the 3′ UTR of HMGB1 and inhibits the HMGB1-promoted autophagy. Our study suggests a complexity in the regulation of autophagy by miR-22 and HMGB1 during chemotherapy resistance in osteosarcoma. These results reveal novel potential role of miR-22 against chemotherapy resistance during the treatment of osteosarcoma.

Keywords

miR-22 HMGB1 Autophagy Osteosarcoma cells Chemotherapy 

Notes

Conflicts of interest

None

References

  1. 1.
    Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Provisor AJ, Ettinger LJ, Nachman JB, Krailo MD, Makley JT, Yunis EJ, et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the children’s cancer group. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15:76–84.Google Scholar
  3. 3.
    Goorin AM, Schwartzentruber DJ, Devidas M, Gebhardt MC, Ayala AG, Harris MB, et al. Pediatric oncology G: presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: pediatric oncology group study pog-8651. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21:1574–80.CrossRefGoogle Scholar
  4. 4.
    Wittig JC, Bickels J, Priebat D, Jelinek J, Kellar-Graney K, Shmookler B, et al. Osteosarcoma: a multidisciplinary approach to diagnosis and treatment. Am Fam Physician. 2002;65:1123–32.PubMedGoogle Scholar
  5. 5.
    Rosen G, Caparros B, Groshen S, Nirenberg A, Cacavio A, Marcove RC, et al. Primary osteogenic sarcoma of the femur: a model for the use of preoperative chemotherapy in high risk malignant tumors. Cancer Investig. 1984;2:181–92.CrossRefGoogle Scholar
  6. 6.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2009;15:5308–16.Google Scholar
  8. 8.
    Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7:961–7.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Livesey KM, Tang D, Zeh HJ, Lotze MT. Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs. 2009;10:1269–79.PubMedGoogle Scholar
  10. 10.
    Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Tang D, Kang R, Zeh 3rd HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14:1315–35.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Tang D, Kang R, Zeh 3rd HJ, Lotze MT. High-mobility group box 1 and cancer. Biochim Biophys Acta. 2010;1799:131–40.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881–92.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Tang D, Kang R, Livesey KM, Kroemer G, Billiar TR, Van Houten B, et al. High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab. 2011;13:701–11.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, et al. HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia. 2011;25:23–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene. 2010;29:5299–310.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, et al. HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 2012;72:230–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.CrossRefPubMedGoogle Scholar
  21. 21.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X, et al. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J Biol Chem. 2012;287:4148–56.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Hu H, Li S, Cui X, Lv X, Jiao Y, Yu F, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting heparin sulfate proteoglycan 2 (HSPG2). J Biol Chem. 2013;288:10973–85.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Bourguignon LY, Wong G, Earle C, Chen L. Hyaluronan-cd44v3 interaction with oct4-sox2-nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem. 2012;287:32800–24.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Kastl L, Brown I, Schofield AC. MiRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat. 2012;131:445–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Tao J, Lu Q, Wu D, Li P, Xu B, Qing W, et al. MicroRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep. 2011;25:1721–9.PubMedGoogle Scholar
  27. 27.
    Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065–74.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Mukhopadhyay P, Pacher P, Das DK. MicroRNA signatures of resveratrol in the ischemic heart. Ann N Y Acad Sci. 2011;1215:109–16.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009;5:816–23.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet. 2011;43:242–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Xiao J, Zhu X, He B, Zhang Y, Kang B, Wang Z, et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci. 2011;18:35.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439–44.PubMedGoogle Scholar
  33. 33.
    Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR. A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res. 2013;41:2239–54.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.CrossRefPubMedGoogle Scholar
  36. 36.
    Duan Z, Choy E, Harmon D, Yang C, Ryu K, Schwab J, et al. Insulin-like growth factor-I receptor tyrosine kinase inhibitor cyclolignan picropodophyllin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines. Mol Cancer Ther. 2009;8:2122–30.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12:814–22.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c (t)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 2010;38:e98.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Anesthesiology, China-Japan Union HospitalJilin UniversityChangchunChina
  2. 2.China-Japan Union HospitalJilin UniversityChangchunChina
  3. 3.Department of Endocrinology, Second HospitalJilin UniversityChangchunChina
  4. 4.Department of Radiology, China-Japan Union HospitalJilin UniversityChangchunChina
  5. 5.Department of Orthopedics, China-Japan Union HospitalJilin UniversityChangchunChina

Personalised recommendations