Tumor Biology

, Volume 35, Issue 7, pp 6255–6264 | Cite as

Translational regulator eIF2α in tumor

  • Qiaoli Zheng
  • Jingjia Ye
  • Jiang CaoEmail author


The eukaryotic translation initiation factor 2α (eIF2α) is the regulatory subunit of eIF2 which can be inactivated by phosphorylation. In the adaptive response to various microenvironmental stresses, phosphorylation of eIF2α (p-eIF2α) by specific kinases significantly downregulates global protein synthesis while selectively upregulates the activating transcription factor 4 (ATF4) translation. The ATF4 is a transcription activator that can translocate into nucleus and upregulate genes involved in amino acid synthesis, redox balance, protein maturation, and degradation which lead to the activation of both autophagy and apoptosis. During tumor progression, adaptive response facilitates tumor cell survival and growth under severe stresses. Therefore, eIF2α phosphorylation significantly promotes tumor progression and resistance to therapy. However, there is also evidence showing that p-eIF2α exerts suppressive effects on tumorigenesis. Current understanding of the roles eIF2α plays in tumor is still incomplete and needs further investigation. This review addresses on the past and current efforts to delineate the molecular mechanisms of eIF2α in tumorigenesis, tumor progression, resistance to therapy, and tumor cachexia as well as the translational promise of therapeutic applications targeting eIF2α-related signaling pathway.


EIF2α Tumor Translation initiation Stress response Tumor therapy 



This work was supported by the National Natural Science Foundation of China (No. 81172516).

Conflict of interests

The authors have no conflict of interests.


  1. 1.
    Lu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I, Scheuner D, et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 2004;23:169–79.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Corrigendum: global quantification of mammalian gene expression control. Nature. 2013;495:126–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr. 2012;3:307–21.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.CrossRefPubMedGoogle Scholar
  5. 5.
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Stolboushkina EA, Garber MB. Eukaryotic type translation initiation factor 2: structure-functional aspects. Biochemistry (Mosc). 2011;76:283–94.CrossRefGoogle Scholar
  7. 7.
    Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer. 2010;10:254–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Hinnebusch AG. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev. 2011;75:434–67.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–45.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34:7–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenwald IB, Hutzler MJ, Wang S, Savas L, Fraire AE. Expression of eukaryotic translation initiation factors 4E and 2alpha is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer. 2001;92:2164–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Rosenwald IB, Koifman L, Savas L, Chen JJ, Woda BA, Kadin ME. Expression of the translation initiation factors eIF-4E and eIF-2α is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum Pathol. 2008;39:910–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Lobo MV, Martin ME, Perez MI, Alonso FJ, Redondo C, Alvarez MI, et al. Levels, phosphorylation status and cellular localization of translational factor eIF2 in gastrointestinal carcinomas. Histochem J. 2000;32:139–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Rosenwald IB, Wang S, Savas L, Woda B, Pullman J. Expression of translation initiation factor eIF-2alpha is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer. 2003;98:1080–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Tejada S, Lobo MV, Garcia-Villanueva M, Sacristan S, Perez-Morgado MI, Salinas M, et al. Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors. J Histochem Cytochem. 2009;57:503–12.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science. 1992;257:1685–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Donze O, Jagus R, Koromilas AE, Hershey JW, Sonenberg N. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3 T3 cells. EMBO J. 1995;14:3828–34.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Meurs EF, Galabru J, Barber GN, Katze MG, Hovanessian AG. Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A. 1993;90:232–6.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci U S A. 1993;90:5893–5.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Williams BR. PKR: a sentinel kinase for cellular stress. Oncogene. 1999;18:6112–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Mounir Z, Koromilas AE. Uncovering the PKR pathway's potential for treatment of tumors. Future Oncol. 2010;6:643–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Wimbauer F, Yang C, Shogren KL, Zhang M, Goyal R, Riester SM, et al. Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells. BMC Cancer. 2012;12:93.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    He Y, Correa AM, Raso MG, Hofstetter WL, Fang B, Behrens C, et al. The role of PKR/eIF2alpha signaling pathway in prognosis of non-small cell lung cancer. PLoS One. 2011;6:e24855.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.CrossRefPubMedGoogle Scholar
  26. 26.
    Koshikawa N, Maejima C, Miyazaki K, Nakagawara A, Takenaga K. Hypoxia selects for high-metastatic Lewis lung carcinoma cells overexpressing Mcl-1 and exhibiting reduced apoptotic potential in solid tumors. Oncogene. 2006;25:917–28.CrossRefPubMedGoogle Scholar
  27. 27.
    Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8:851–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol. 2002;22:7405–16.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 2005;24:3470–81.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Anthony TG, McDaniel BJ, Byerley RL, McGrath BC, Cavener DR, McNurlan MA, et al. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem. 2004;279:36553–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 2010;29:2082–96.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A. 2004;101:11269–74.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol. 2004;167:27–33.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Singleton DC, Harris AL. Targeting the ATF4 pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:1189–202.CrossRefPubMedGoogle Scholar
  35. 35.
    Hansen MB, Mitchelmore C, Kjaerulff KM, Rasmussen TE, Pedersen KM, Jensen NA. Mouse Atf5: molecular cloning of two novel mRNAs, genomic organization, and odorant sensory neuron localization. Genomics. 2002;80:344–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. 2009;20:436–43.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Kilberg MS, Pan YX, Chen H, Leung-Pineda V. Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr. 2005;25:59–85.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Chen H, Pan YX, Dudenhausen EE, Kilberg MS. Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation. J Biol Chem. 2004;279:50829–39.CrossRefPubMedGoogle Scholar
  39. 39.
    van den Beucken T, Koritzinsky M, Niessen H, Dubois L, Savelkouls K, Mujcic H, et al. Hypoxia-induced expression of carbonic anhydrase 9 is dependent on the unfolded protein response. J Biol Chem. 2009;284:24204–12.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ. Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis. 1996;14:176–86.CrossRefPubMedGoogle Scholar
  41. 41.
    Svastova E, Hulikova A, Rafajova M, Zat'ovicova M, Gibadulinova A, Casini A, et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 2004;577:439–45.CrossRefPubMedGoogle Scholar
  42. 42.
    Pastorekova S, Parkkila S, Zavada J. Tumor-associated carbonic anhydrases and their clinical significance. Adv Clin Chem. 2006;42:167–216.CrossRefPubMedGoogle Scholar
  43. 43.
    Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 2004;64:5943–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Murphy BJ, Laderoute KR, Short SM, Sutherland RM. The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells. Br J Cancer. 1991;64:69–73.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Roll DE, Murphy BJ, Laderoute KR, Sutherland RM, Smith HC. Oxygen regulated 80 kDa protein and glucose regulated 78 kDa protein are identical. Mol Cell Biochem. 1991;103:141–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Wilson RE, Sutherland RM. Enhanced synthesis of specific proteins, RNA, and DNA caused by hypoxia and reoxygenation. Int J Radiat Oncol Biol Phys. 1989;16:957–61.CrossRefPubMedGoogle Scholar
  47. 47.
    Gess B, Hofbauer KH, Wenger RH, Lohaus C, Meyer HE, Kurtz A. The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha. Eur J Biochem. 2003;270:2228–35.CrossRefPubMedGoogle Scholar
  48. 48.
    Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.CrossRefPubMedGoogle Scholar
  49. 49.
    Macintosh RL, Ryan KM. Autophagy in tumour cell death. Semin Cancer Biol. 2013;23:344–51.CrossRefPubMedGoogle Scholar
  50. 50.
    Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, et al. Autophagy: cancer's friend or foe? Adv Cancer Res. 2013;118:61–95.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Micel LN, Tentler JJ, Smith PG, Eckhardt GS. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol. 2013;31:1231–8.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.CrossRefPubMedGoogle Scholar
  53. 53.
    Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J. 1999;339(Pt 1):135–41.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol. 2002;318:1351–65.CrossRefPubMedGoogle Scholar
  55. 55.
    Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem. 2004;279:5288–97.CrossRefPubMedGoogle Scholar
  56. 56.
    Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307.CrossRefPubMedGoogle Scholar
  57. 57.
    Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.CrossRefPubMedGoogle Scholar
  58. 58.
    Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.CrossRefPubMedGoogle Scholar
  59. 59.
    Luk CK, Sutherland RM. Influence of growth phase, nutrition and hypoxia on heterogeneity of cellular buoyant densities in in vitro tumor model systems. Int J Cancer. 1986;37:883–90.CrossRefPubMedGoogle Scholar
  60. 60.
    Rouschop KM, Dubois LJ, Keulers TG, van den Beucken T, Lambin P, Bussink J, et al. PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc Natl Acad Sci U S A. 2013;110:4622–7.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Balasubramanian MN, Butterworth EA, Kilberg MS. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab. 2013;304:E789–99.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Estes DA, Lovato DM, Khawaja HM, Winter SS, Larson RS. Genetic alterations determine chemotherapy resistance in childhood T-ALL: modelling in stage-specific cell lines and correlation with diagnostic patient samples. Br J Haematol. 2007;139:20–30.CrossRefPubMedGoogle Scholar
  63. 63.
    Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VH, Groom AC, et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat. 2003;82:199–206.CrossRefPubMedGoogle Scholar
  64. 64.
    Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 2006;66:1702–11.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Tisdale MJ. Cancer cachexia. Curr Opin Gastroenterol. 2010;26:146–51.CrossRefPubMedGoogle Scholar
  66. 66.
    Tisdale MJ. Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol. 2010;6:503–13.CrossRefPubMedGoogle Scholar
  67. 67.
    Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89:381–410.CrossRefPubMedGoogle Scholar
  68. 68.
    Aktas BH, Qiao Y, Ozdelen E, Schubert R, Sevinc S, Harbinski F, et al. Small-molecule targeting of translation initiation for cancer therapy. Oncotarget. 2013;4:1606–17.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Zhang J, Cao J, Weng Q, Wu R, Yan Y, Jing H, et al. Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) by tirapazamine is dependent on eIF2alpha phosphorylation rather than the mTORC1/4E-BP1 pathway. PLoS One. 2010;5:e13910.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Hu R, Zhou P, Peng YB, Xu X, Ma J, Liu Q, et al. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PLoS One. 2012;7:e39664.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Kusio-Kobialka M, Podszywalow-Bartnicka P, Peidis P, Glodkowska-Mrowka E, Wolanin K, Leszak G, et al. The PERK-eIF2alpha phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle. 2012;11:4069–78.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013;73:1993–2002.CrossRefPubMedGoogle Scholar
  73. 73.
    Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther. 2006;5:723–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Claessen JH, Kundrat L, Ploegh HL. Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol. 2012;22:22–32.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Obeng EA, Carlson LM, Gutman DM, Harrington Jr WJ, Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–16.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Schewe DM, Aguirre-Ghiso JA. Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res. 2009;69:1545–52.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Doudican NA, Wen SY, Mazumder A, Orlow SJ. Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways. Oncol Rep. 2012;28:1851–8.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Chauhan D, Tian Z, Zhou B, Kuhn D, Orlowski R, Raje N, et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res. 2011;17:5311–21.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–8.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10:1533–41.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011;17:654–66.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci U S A. 2012;109:8253–8.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Morrow K, Hernandez CP, Raber P, Del Valle L, Wilk AM, Majumdar S, et al. Anti-leukemic mechanisms of pegylated arginase I in acute lymphoblastic T-cell leukemia. Leukemia. 2013;27:569–77.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Gajate C, Matos-da-Silva M, el Dakir H, Fonteriz RI, Alvarez J, Mollinedo F. Antitumor alkyl-lysophospholipid analog edelfosine induces apoptosis in pancreatic cancer by targeting endoplasmic reticulum. Oncogene. 2012;31:2627–39.CrossRefPubMedGoogle Scholar
  85. 85.
    Lundemo AG, Pettersen CH, Berge K, Berge RK, Schonberg SA. Tetradecylthioacetic acid inhibits proliferation of human SW620 colon cancer cells—gene expression profiling implies endoplasmic reticulum stress. Lipids Health Dis. 2011;10:190.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Yuan X, Yu B, Wang Y, Jiang J, Liu L, Zhao H, et al. Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Pat Anticancer Drug Discov. 2013;8:191–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Lin S, Zhang J, Chen H, Chen K, Lai F, Luo J, et al. Involvement of endoplasmic reticulum stress in capsaicin-induced apoptosis of human pancreatic cancer cells. Evid Based Complement Alternat Med. 2013;2013:629750.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Park SH, Park HS, Lee JH, Chi GY, Kim GY, Moon SK, et al. Induction of endoplasmic reticulum stress-mediated apoptosis and non-canonical autophagy by luteolin in NCI-H460 lung carcinoma cells. Food Chem Toxicol. 2013;56:100–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Yu JS, Kim AK. Platycodin D induces reactive oxygen species-mediated apoptosis signal-regulating kinase 1 activation and endoplasmic reticulum stress response in human breast cancer cells. J Med Food. 2012;15:691–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Stockwell SR, Platt G, Barrie SE, Zoumpoulidou G, Te Poele RH, Aherne GW, et al. Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS One. 2012;7:e28568.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Kunkeaw N, Jeon SH, Lee K, Johnson BH, Tanasanvimon S, Javle M, et al. Cell death/proliferation roles for nc886, a non-coding RNA, in the protein kinase R pathway in cholangiocarcinoma. Oncogene. 2012;32:3722–31.CrossRefPubMedGoogle Scholar
  92. 92.
    Jha BK, Polyakova I, Kessler P, Dong B, Dickerman B, Sen GC, et al. Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J Biol Chem. 2011;286:26319–26.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Jha BK, Dong B, Nguyen CT, Polyakova I, Silverman RH. Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol Ther. 2013;21:1749–57.PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Park MA, Zhang G, Martin AP, Hamed H, Mitchell C, Hylemon PB, et al. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008;7:1648–62.PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    West NW, Garcia-Vargas A, Chalfant CE, Park MA. OSU-03012 sensitizes breast cancers to lapatinib-induced cell killing: a role for Nck1 but not Nck2. BMC Cancer. 2013;13:256.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Clinical Research Center, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations