Tumor Biology

, Volume 35, Issue 7, pp 6221–6233 | Cite as

Characterization of the 9L gliosarcoma implanted in the Fischer rat: an orthotopic model for a grade IV brain tumor

  • Audrey Bouchet
  • Marie Bidart
  • Imen Miladi
  • Céline Le Clec’h
  • Raphaël Serduc
  • Charles Coutton
  • Pierrick Regnard
  • Enam Khalil
  • Sandrine Dufort
  • Benjamin Lemasson
  • Jean Laissue
  • Laurent Pelletier
  • Géraldine Le DucEmail author


Among rodent models for brain tumors, the 9L gliosarcoma is one of the most widely used. Our 9L-European Synchrotron Radiation Facility (ESRF) model was developed from cells acquired at the Brookhaven National Laboratory (NY, USA) in 1997 and implanted in the right caudate nucleus of syngeneic Fisher rats. It has been largely used by the user community of the ESRF during the last decade, for imaging, radiotherapy, and chemotherapy, including innovative treatments based on particular irradiation techniques and/or use of new drugs. This work presents a detailed study of its characteristics, assessed by magnetic resonance imaging (MRI), histology, immunohistochemistry, and cytogenetic analysis. The data used for this work were from rats sampled in six experiments carried out over a 3-year period in our lab (total number of rats = 142). The 9L-ESRF tumors were induced by a stereotactic inoculation of 104 9L cells in the right caudate nucleus of the brain. The assessment of vascular parameters was performed by MRI (blood volume fraction and vascular size index) and by immunostaining of vessels (rat endothelial cell antigen-1 and type IV collagen). Immunohistochemistry and regular histology were used to describe features such as tumor cell infiltration, necrosis area, nuclear pleomorphism, cellularity, mitotic characteristics, leukocytic infiltration, proliferation, and inflammation. Moreover, for each of the six experiments, the survival of the animals was assessed and related to the tumor growth observed by MRI or histology. Additionally, the cytogenetic status of the 9L cells used at ESRF lab was investigated by comparative genomics hybridization analysis. Finally, the response of the 9L-ESRF tumor to radiotherapy was estimated by plotting the survival curves after irradiation. The median survival time of 9L-ESRF tumor-bearing rats was highly reproducible (19–20 days). The 9L-ESRF tumors presented a quasi-exponential growth, were highly vascularized with a high cellular density and a high proliferative index, accompanied by signs of inflammatory responses. We also report an infiltrative pattern which is poorly observed on conventional 9 L tumor. The 9L-ESRF cells presented some cytogenetic specificities such as altered regions including CDK4, CDKN2A, CDKN2B, and MDM2 genes. Finally, the lifespan of 9L-ESRF tumor-bearing rats was enhanced up to 28, 35, and 45 days for single doses of 10, 20, and 2 × 20 Gy, respectively. First, this report describes an animal model that is used worldwide. Second, we describe few features typical of our model if compared to other 9L models worldwide. Altogether, the 9L-ESRF tumor model presents characteristics close to the human high-grade gliomas such as high proliferative capability, high vascularization and a high infiltrative pattern. Its response to radiotherapy demonstrates its potential as a tool for innovative radiotherapy protocols.


Glioma 9L Rat Infiltration Hypervascularization Radiotherapy Cytogenetic 



Blood volume fraction


Comparative genomics hybridization


Deoxyribonucleic acid


European Collection of Cell Cultures


Epidermal growth factor receptor


European Synchrotron Radiation Facility


Glial fibrillary acidic protein


Magnetic resonance imaging


Median survival time


Platelet-derived growth factor receptor


Standard error to the mean


Vessel size index



We thank Charlène Caloud, Hélène Bernard, and Dominique Dalléry for their technical help.

Conflicts of interest


Financial support

This project was partially granted by the Institut National du Cancer of France (Bioresys project #200187).


  1. 1.
    Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology. 1994;191:41–51.CrossRefPubMedGoogle Scholar
  2. 2.
    Asai A, Miyagi Y, Sugiyama A, Gamanuma M, Hong SH, Takamoto S, et al. Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy. J Neurooncol. 1994;19:259–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Barth RF. Rat brain tumor models in experimental neuro-oncology: the 9 L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol. 1998;36:91–102.CrossRefPubMedGoogle Scholar
  4. 4.
    Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9 L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol. 2009;94:299–312.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C, et al. Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neurooncol. 2008;86:13–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Benda P, Someda K, Messer J, Sweet WH. Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J Neurosurg. 1971;34:310–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Bouchet A, Boumendjel A, Khalil E, Serduc R, Brauer E, Siegbahn EA, et al. Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors. J Synchrotron Radiat. 2012;19:478–82.CrossRefPubMedGoogle Scholar
  8. 8.
    Bouchet A, Lemasson B, Leduc G, Maisin C, Bräuer-Krisch E, Siegbahn AE, et al. Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int J Radiat Oncol Biol Phys. 2010;78:1503–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Bouchet A, Lemasson B, Christen T, Potez M, Rome C, Coquery N, et al.: Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain. Radiother Oncol. 2013Google Scholar
  10. 10.
    Coniglio SJ, Segall JE: Review: molecular mechanism of microglia stimulated glioblastoma invasion. Matrix Biol. 2013.Google Scholar
  11. 11.
    Darpolor MM, Molthen RC, Schmainda KM. Multimodality imaging of abnormal vascular perfusion and morphology in preclinical 9L gliosarcoma model. PLoS One. 2011;6:e16621.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Denlinger RH, Axler DA, Koestner A, Liss L. Tumor-specific transplantation immunity to intracerebral challenge with cells from a methylnitrosourea- induced brain tumor. J Med. 1975;6:249–59.PubMedGoogle Scholar
  13. 13.
    Goldbrunner RH, Wagner S, Roosen K, Tonn JC. Models for assessment of angiogenesis in gliomas. J Neuro Oncol. 2000;50:53–62.CrossRefGoogle Scholar
  14. 14.
    Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10:319–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Jacobs VL, Valdes PA, Hickey WF, De Leo JA. Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neurol. 2011;3:e00063.Google Scholar
  16. 16.
    Karsy M, Gelbman M, Shah P, Balumbu O, Moy F, Arslan E. Established and emerging variants of glioblastoma multiforme: review of morphological and molecular features. Folia Neuropathol. 2012;50:301–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Kruse CA, Molleston MC, Parks EP, Schiltz PM, Kleinschmidt-DeMasters BK, Hickey WF. A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neuro Oncol. 1994;22:191–200.CrossRefGoogle Scholar
  18. 18.
    Le Duc G, Miladi I, Alric C, Mowat P, Bräuer-Krisch E, Bouchet A, et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 2011;5:9566–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Lemasson B, Christen T, Tizon X, Farion R, Fondraz N, Provent P, et al. Assessment of multiparametric MRI in a human glioma model to monitor cytotoxic and anti-angiogenic drug effects. NMR Biomed. 2011;24:473–82.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Lemasson B, Serduc R, Maisin C, Bouchet A, Coquery N, Robert P, et al. Monitoring blood–brain barrier status in a rat model of glioma receiving therapy: dual injection of low-molecular-weight and macromolecular MR contrast media. Radiology. 2010;257:342–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Maeda M, Itoh S, Kimura H, Iwasaki T, Hayashi N, Yamamoto K, et al. Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology. 1993;189:233–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Pathak AP, Schmainda KM, Ward BD, Linderman JR, Rebro KJ, Greene AS. MR-derived cerebral blood volume maps: issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med. 2001;46:735–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Regnard P, Duc GL, Bräuer-Krisch E, Tropres I, Siegbahn EA, Kusak A, et al. Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar x-ray beams from a synchrotron: balance between curing and sparing. Phys Med Biol. 2008;53:861–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Régnard P, Bräuer-Krisch E, Troprès I, Keyriläinen J, Bravin A, Le Duc G. Enhancement of survival of 9L gliosarcoma bearing rats following intracerebral delivery of drugs in combination with microbeam radiation therapy. Eur J Radiol. 2008;68:S151–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Serduc R, Bouchet A, Brauer-Krisch E, Laissue JA, Spiga J, Sarun S, et al. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose. Phys Med Biol. 2009;54:6711–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Serduc R, Brauer-Krisch E, Bouchet A, Renaud L, Brochard T, Bravin A, et al. First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy. J Synchrotron Radiat. 2009;16:587–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Serduc R, Christen T, Laissue J, Farion R, Bouchet A, van der Sanden B, et al. Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study. Phys Med Biol. 2008;53:3609–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Serduc R, Verant P, Vial JC, Farion R, Rocas L, Remy C, et al. In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature. Int J Radiat Oncol Biol Phys. 2006;64:1519–27.CrossRefPubMedGoogle Scholar
  32. 32.
    Sibenaller ZA, Etame AB, Ali MM, Barua M, Braun TA, Casavant TL, et al. Genetic characterization of commonly used glioma cell lines in the rat animal model system. Neurosurg Focus. 2005;19:E1.CrossRefPubMedGoogle Scholar
  33. 33.
    Stojiljkovic M, Piperski V, Dacevic M, Rakic L, Ruzdijic S, Kanazir S: Characterization of 9L glioma model of the Wistar rat. J Neurooncol. 2003;63:1–7, Available: Accessed 23 January 2013.
  34. 34.
    Strakova N, Ehrmann J, Dzubak P, Bouchal J, Kolar Z. The synthetic ligand of peroxisome proliferator-activated receptor-gamma ciglitazone affects human glioblastoma cell lines. J Pharmacol Exp Ther. 2004;309:1239–47.CrossRefPubMedGoogle Scholar
  35. 35.
    Tropres I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, et al. Vessel size imaging. Magn Reson Med. 2001;45:397–408.CrossRefPubMedGoogle Scholar
  36. 36.
    Tropres I, Lamalle L, Peoc’h M, Farion R, Usson Y, Decorps M, et al. In vivo assessment of tumoral angiogenesis. Magn Reson Med. 2004;51:533–41.CrossRefPubMedGoogle Scholar
  37. 37.
    Valable S, Lemasson B, Farion R, Beaumont M, Segebarth C, Remy C, et al. Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study. NMR Biomed. 2008;21:1043–56.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhou Y, Su Z, Huang Y, Sun T, Chen S, Wu T, et al. The Zfx gene is expressed in human gliomas and is important in the proliferation and apoptosis of the human malignant glioma cell line U251. J Exp Clin Cancer Res. 2011;30:114.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Audrey Bouchet
    • 1
    • 2
    • 7
  • Marie Bidart
    • 1
    • 8
  • Imen Miladi
    • 3
    • 9
  • Céline Le Clec’h
    • 2
    • 10
  • Raphaël Serduc
    • 2
    • 11
  • Charles Coutton
    • 4
  • Pierrick Regnard
    • 2
    • 12
  • Enam Khalil
    • 2
    • 13
  • Sandrine Dufort
    • 5
    • 6
  • Benjamin Lemasson
    • 1
  • Jean Laissue
    • 7
  • Laurent Pelletier
    • 1
    • 8
  • Géraldine Le Duc
    • 2
    • 14
    Email author
  1. 1.Grenoble Institut des NeurosciencesUniversité Joseph Fourier, INSERM U836La Tronche CedexFrance
  2. 2.Biomedical BeamlineEuropean Synchrotron Radiation FacilityGrenoble CedexFrance
  3. 3.Laboratoire de Physico-Chimie des Matériaux Luminescents, UMR 5620 CNRS – UCBLUniversité de LyonVilleurbanne CedexFrance
  4. 4.Département Génétique et Procréation, Laboratoire de Génétique Chromosomique, Hôpital Couple-EnfantCHU Grenoble, Equipe GIT, UJF/CNRS AGIM FRE 34056La TroncheFrance
  5. 5.Nano-H SASSaint-Quentin FallavierFrance
  6. 6.INSERM, CRI, U823, Institut Albert BonniotGrenobleFrance
  7. 7.Institute of AnatomyUniversity of BernBernSwitzerland
  8. 8.Grenoble University HospitalGrenoble CedexFrance
  9. 9.INSERM, Imagerie Moléculaire et thérapie Vectorisée, UMR 990, Université d’AuvergneClermont-FerrandFrance
  10. 10.CEA, LETI, CLINATECGrenobleFrance
  11. 11.INSERM, U836GrenobleFrance
  12. 12.Plateforme SILABE-ADUEIS, Fort FochNiederhausbergenFrance
  13. 13.Faculty of Pharmacy, University of JordanAmmanJordan
  14. 14.ESRFGrenobleFrance

Personalised recommendations