Tumor Biology

, Volume 35, Issue 6, pp 5701–5707

ARID1A is downregulated in non-small cell lung cancer and regulates cell proliferation and apoptosis

  • Yi Zhang
  • Xiaoman Xu
  • Meng Zhang
  • Xue Bai
  • Hui Li
  • Liang Kan
  • Huiyan Niu
  • Ping He
Research Article

Abstract

ARID1A (AT-rich interactive domain 1A) is a key member of the SWI/SNF chromatin-modeling complex, and the gene has emerged as a tumor suppressor in various human cancers. In the present study, we investigated the expression and clinical significance of ARID1A in non-small cell lung cancer (NSCLC). We found that ARID1A expression was decreased in NSCLC tissues compared with normal bronchial epithelium and was significantly correlated with nodal metastasis, tumor, node, metastasis (TNM) stage, and poor differentiation. ARID1A expression was lower in lung cancer cell lines than normal bronchial epithelial HBE cell line. We also explored the involvement of ARID1A in biological behavior of lung cancer cell lines. ARID1A depletion by small interfering RNA (siRNA) in H460 and H1299 cell lines promoted proliferation, colony formation ability, and inhibited paclitaxel-induced apoptosis. Furthermore, we identified that ARID1A regulated several cell cycle and apoptosis-related targets such as cyclin D1 and Bcl-2. In addition, the activity of Akt phosphorylation was also enhanced after ARID1A depletion. In conclusion, our data suggested that ARID1A may serve as an important tumor suppressor in NSCLC.

Keywords

ARID1A Non-small cell lung cancer Proliferation Apoptosis 

References

  1. 1.
    Van Rechem C, Boulay G, Leprince D. HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A. Biochem Biophys Res Commun. 2009;385(4):586–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu H, Mulholland N, Fu H, Zhao K. Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol Cell Biol. 2006;26(7):2550–9.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene. 2009;28(14):1653–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Gao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang Z. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci U S A. 2008;105(18):6656–61.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Dallas PB, Pacchione S, Wilsker D, Bowrin V, Kobayashi R, Moran E. The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity. Mol Cell Biol. 2000;20(9):3137–46.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Nagl Jr NG, Patsialou A, Haines DS, Dallas PB, Beck Jr GR, Moran E. The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest. Cancer Res. 2005;65(20):9236–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Cornen S, Adelaide J, Bertucci F, Finetti P, Guille A, Birnbaum DJ, et al. Mutations and deletions of ARID1A in breast tumors. Oncogene. 2012;31(38):4255–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Agrawal N, Jiao Y, Bettegowda C, Hutfless SM, Wang Y, David S, et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2012;2(10):899–905.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Streppel MM, Lata S, Delabastide M, Montgomery EA, Wang JS, Canto MI, et al. Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene. 2014;33(3):347–57. doi:10.1038/onc.2012.586.Google Scholar
  10. 10.
    Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43(12):1219–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Abe H, Maeda D, Hino R, Otake Y, Isogai M, Ushiku AS, et al. ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch. 2012;461(4):367–77.CrossRefPubMedGoogle Scholar
  13. 13.
    Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2012;33(1):100–3.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci U S A. 2012;109(5):E252–9.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet. 2012;44(10):1117–21.CrossRefPubMedGoogle Scholar
  16. 16.
    Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44(7):760–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet. 2011;43(9):875–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Sausen M, Leary RJ, Jones S, Wu J, Reynolds CP, Liu X, et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet. 2013;45(1):12–7.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Giulino-Roth L, Wang K, MacDonald TY, Mathew S, Tam Y, Cronin MT, et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood. 2012;120(26):5181–4.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, et al. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol. 2011;35(5):625–32.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Maeda D, Mao TL, Fukayama M, Nakagawa S, Yano T, Taketani Y, et al. Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci. 2010;11(12):5120–8.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang X, Nagl Jr NG, Flowers S, Zweitzig D, Dallas PB, Moran E. Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer. 2004;112(4):636.CrossRefPubMedGoogle Scholar
  26. 26.
    Zeng Y, Liu Z, Yang J, Liu Y, Huo L, Li Z, et al. ARID1A is a tumour suppressor and inhibits glioma cell proliferation via the PI3K pathway. Head Neck Oncol. 2013;5(1):6.Google Scholar
  27. 27.
    Yan HB, Wang XF, Zhang Q, Tang ZQ, Jiang YH, Fan HZ, et al. Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis.Google Scholar
  28. 28.
    Wang DD, Chen YB, Pan K, Wang W, Chen SP, Chen JG, et al. Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer. PLoS One. 2012;7(7):e40364.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Yokoyama Y, Matsushita Y, Shigeto T, Futagami M, Mizunuma H. Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer. J Gynecol Oncol. 2014;25(1):58–63.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Zhao J, Liu C, Zhao Z. ARID1A: a potential prognostic factor for breast cancer. Tumour Biol. 2014. doi:10.1007/s13277-014-1632-7.
  31. 31.
    Zhang X, Zhang Y, Yang Y, Niu M, Sun S, Ji H, et al. Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance. Cancer Epidemiol. 2012;36(3):288–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Guan B, Wang TL, Shih Ie M. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011;71(21):6718–27.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X, et al. Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A. 2008;105(51):20380–5.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Liu J, Liao Q, Zhang Y, Sun S, Zhong C, Liu X. Cyclin D1 G870A polymorphism and lung cancer risk: a meta-analysis. Tumour Biol. 2012;33(5):1467–76. doi:10.1007/s13277-012-0397-0.Google Scholar
  35. 35.
    Liu Y, Wang L, Lin XY, Wang J, Yu JH, Miao Y, et al. The transcription factor DEC1 (BHLHE40/STRA13/SHARP-2) is negatively associated with TNM stage in non-small-cell lung cancer and inhibits the proliferation through cyclin D1 in A549 and BE1 cells. Tumour Biol. 34(3):1641–50.Google Scholar
  36. 36.
    Daniel JC, Smythe WR. The role of Bcl-2 family members in non-small cell lung cancer. Semin Thorac Cardiovasc Surg. 2004;16(1):19–27.CrossRefPubMedGoogle Scholar
  37. 37.
    Lin Y, Xu J, Liao H, Li L, Pan L. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumour Biol. 2013. doi:10.1007/s13277-013-1433-4.
  38. 38.
    Liang H, Cheung LW, Li J, Ju Z, Yu S, Stemke-Hale K, et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 2012;22(11):2120–9.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004.CrossRefPubMedGoogle Scholar
  40. 40.
    Lu B, Di W, Wang H, Ma H, Li J, Zhang Q. Tumor suppressor TSLC1 is implicated in cell proliferation, invasion and apoptosis in laryngeal squamous cell carcinoma by regulating Akt signaling pathway. Tumour Biol. 2012;33(6):2007–17. doi:10.1007/s13277-012-0460-x.Google Scholar
  41. 41.
    Yu Y, Yin D, Hoque MO, Cao B, Jia Y, Yang Y, et al. AKT signaling pathway activated by HIN-1 methylation in non-small cell lung cancer. Tumour Biol. 2012;33(2):307–14. doi:10.1007/s13277-011-0266-2.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yi Zhang
    • 1
  • Xiaoman Xu
    • 2
  • Meng Zhang
    • 1
  • Xue Bai
    • 1
  • Hui Li
    • 1
  • Liang Kan
    • 1
  • Huiyan Niu
    • 1
  • Ping He
    • 1
  1. 1.Department of GeriatricsShengjing Hospital of China Medical UniversityShenyangChina
  2. 2.Department of Respiratory MedicineShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations