Tumor Biology

, Volume 35, Issue 6, pp 5389–5393 | Cite as

RETRACTED ARTICLE: The association of c.1471G>A genetic polymorphism in XRCC1 gene with lung cancer susceptibility in Chinese Han population

  • Li Wang
  • Zhenhong Chen
  • Yajuan Wang
  • De Chang
  • Longxiang Su
  • Yinghua Guo
  • Changting Liu
Research Article

Abstract

Lung cancer is one of the most spread cancers in the world. The X-ray repair cross-complementing group 1 (XRCC1) gene plays an important role in the development of lung cancer. The objective of this study is to investigate the potential association of XRCC1 genetic polymorphisms with the susceptibility to lung cancer. In totally, 361 lung cancer patients (male, 276; female, 85; mean age, 62.55) and 361 cancer-free controls (male, 253; female, 108; mean age, 61.33) were enrolled in this case–control study. The genotypes of XRCC1 c.1471G>A genetic polymorphism were determined by the created restriction site–polymerase chain reaction (CRS-PCR) and DNA sequencing methods. The influence of XRCC1 gene on the susceptibility to lung cancer was analyzed by the analyses association. Our data indicated that significant differences were found in the frequencies of allelic and genotypic between lung cancer patients and cancer-free controls. The c.1471G>A genetic polymorphism was statistically associated with increased susceptibility to lung cancer [AA vs. GG: odds ratio (OR) = 2.75, 95 % confidence interval (CI) = 1.55–4.88, P < 0.001; AA vs. GA/GG: OR = 2.69, 95 % CI = 1.55–4.69, P < 0.001; A vs. G: OR = 1.37, 95 % CI = 1.09–1.71, P = 0.007]. The allele A and genotype AA may contribute to the susceptibility to lung cancer. Taken together, these results showed that the functional c.1471G>A genetic polymorphism of XRCC1 was associated with lung cancer susceptibility in the studied population.

Keywords

Lung cancer Susceptibility XRCC1 gene Genetic polymorphisms 

Notes

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Yuan Z, Zeng X, Yang D, Wang W, Liu Z. Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS One. 2013;8:e61047.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Guilbert JJ. The world health report 2002—reducing risks, promoting healthy life. Educ Health (Abingdon). 2003;16:230.CrossRefGoogle Scholar
  4. 4.
    Yin Z, Zhou B, He Q, Li M, Guan P, Li X, et al. Association between polymorphisms in DNA repair genes and survival of non-smoking female patients with lung adenocarcinoma. BMC Cancer. 2009;9:439.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Viktorsson K, De Petris L, Lewensohn R. The role of p53 in treatment responses of lung cancer. Biochem Biophys Res Commun. 2005;331:868–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Cui Z, Yin Z, Li X, Wu W, Guan P, Zhou B. Association between polymorphisms in XRCC1 gene and clinical outcomes of patients with lung cancer: a meta-analysis. BMC Cancer. 2012;12:71.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Qian B, Zhang H, Zhang L, Zhou X, Yu H, Chen K. Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer. 2011;73:138–46.CrossRefPubMedGoogle Scholar
  8. 8.
    Sreeja L, Syamala VS, Syamala V, Hariharan S, Raveendran PB, Vijayalekshmi RV, et al. Prognostic importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India. J Cancer Res Clin Oncol. 2008;134:645–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Lopez-Cima MF, Gonzalez-Arriaga P, Garcia-Castro L, Pascual T, Marron MG, Puente XS, et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer. 2007;7:162.CrossRefPubMedGoogle Scholar
  10. 10.
    Giachino DF, Ghio P, Regazzoni S, Mandrile G, Novello S, Selvaggi G, et al. Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in lung cancer. Clin Cancer Res. 2007;13:2876–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen J, Zhao QW, Shi GM, Wang LR. XRCC1 Arg399Gln and clinical outcome of platinum-based treatment for advanced non-small cell lung cancer: a meta-analysis in 17 studies. J Zhejiang Univ Sci B. 2012;13:875–83.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Guo S, Li X, Gao M, Li Y, Song B, Niu W. The relationship between XRCC1 and XRCC3 gene polymorphisms and lung cancer risk in northeastern Chinese. PLoS One. 2013;8:e56213.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hao B, Miao X, Li Y, Zhang X, Sun T, Liang G, et al. A novel T-77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene. 2006;25:3613–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Yin J, Vogel U, Ma Y, Qi R, Wang H. Association of DNA repair gene XRCC1 and lung cancer susceptibility among nonsmoking Chinese women. Cancer Genet Cytogenet. 2009;188:26–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Kalikaki A, Kanaki M, Vassalou H, Souglakos J, Voutsina A, Georgoulias V, et al. DNA repair gene polymorphisms predict favorable clinical outcome in advanced non-small-cell lung cancer. Clin Lung Cancer. 2009;10:118–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Chang JS, Wrensch MR, Hansen HM, Sison JD, Aldrich MC, Quesenberry Jr CP, et al. Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis. 2009;30:78–87.CrossRefPubMedGoogle Scholar
  17. 17.
    Butkiewicz D, Rusin M, Sikora B, Lach A, Chorazy M. An association between DNA repair gene polymorphisms and survival in patients with resected non-small cell lung cancer. Mol Biol Rep. 2011;38:5231–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Li Y, Huang XE, Jin GF, Shen HB, Xu L. Lack of any relationship between chemotherapy toxicity in non-small cell lung cancer cases and polymorphisms in XRCC1 codon 399 or XPD codon 751. Asian Pac J Cancer Prev. 2011;12:739–42.PubMedGoogle Scholar
  19. 19.
    Wang Y, Yang H, Li H, Li L, Wang H, Liu C, et al. Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett. 2009;285:134–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Karkucak M, Yakut T, Evrensel T, Deligonul A, Gulten T, Ocakoglu G, et al. XRCC1 gene polymorphisms and risk of lung cancer in Turkish patients. Int J Hum Genet. 2012;2:113–7.Google Scholar
  21. 21.
    Huang G, Cai S, Wang W, Zhang Q, Liu A. Association between XRCC1 and XRCC3 polymorphisms with lung cancer risk: a meta-analysis from case-control studies. PLoS One. 2013;8:e68457.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Letkova L, Matakova T, Musak L, Sarlinova M, Krutakova M, Slovakova P, et al. DNA repair genes polymorphism and lung cancer risk with the emphasis to sex differences. Mol Biol Rep. 2013;40:5261–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Li Y, Huang Y, Cao YS, Zeng J, Tong WN, Xu SL, et al. Assessment of the association between XRCC1 Arg399Gln polymorphism and lung cancer in Chinese. Tumour Biol. 2013;34:3681–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Li W, Li K, Zhao L, Zou H. DNA repair pathway genes and lung cancer susceptibility: a meta-analysis. Gene. 2013. doi: 10.1016/j.gene.2013.12.028.Google Scholar
  25. 25.
    Rybarova S, Hodorova I, Muri J, Mihalik J, Adamkov M, Svajdler M, et al. Prognostic significance of p53 protein and X-ray repair cross-complementing protein 1 in non-small cell lung cancer. Tumori. 2011;97:79–85.PubMedGoogle Scholar
  26. 26.
    Perez-Morales R, Mendez-Ramirez I, Castro-Hernandez C, Martinez-Ramirez OC, Gonsebatt ME, Rubio J. Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: application of the additive model for cancer. Genet Mol Biol. 2011;34:546–52.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Natukula K, Jamil K, Pingali UR, Attili VS, Madireddy UR. The codon 399 Arg/Gln XRCC1 polymorphism is associated with lung cancer in Indians. Asian Pac J Cancer Prev. 2013;14:5275–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Sun Y, Zhang YJ, Kong XM. No association of XRCC1 and CLPTM1L polymorphisms with non-small cell lung cancer in a non-smoking Han Chinese population. Asian Pac J Cancer Prev. 2013;14:5171–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Guo QX, Yang WH, Zhai JF, Han FC, Wang CY. XRCC1 codon 280 polymorphism and susceptibility to lung cancer: a meta-analysis of the literatures. Tumour Biol. 2013;34:2989–94.CrossRefPubMedGoogle Scholar
  30. 30.
    Ouyang FD, Yang FL, Chen HC, Khan MA, Huang FM, Wan XX, et al. Polymorphisms of DNA repair genes XPD, XRCC1, and OGG1, and lung adenocarcinoma susceptibility in Chinese population. Tumour Biol. 2013;34:2843–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang JY, Cai Y. X-ray repair cross-complementing group 1 codon 399 polymorphism and lung cancer risk: an updated meta-analysis. Tumour Biol. 2014;35:411–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Wu T, Xu YH, Ye XL. X-ray repair cross-complementing group 1 Arg194Trp polymorphism is associated with increased risk of lung cancer in Chinese Han population. Tumour Biol. 2013;34:2611–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Li D, Zhou Q, Liu Y, Yang Y, Li Q. DNA repair gene polymorphism associated with sensitivity of lung cancer to therapy. Med Oncol. 2012;29:1622–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Ke HG, Li J, Shen Y, You QS, Yan Y, Dong HX, et al. Prognostic significance of GSTP1, XRCC1 and XRCC3 polymorphisms in non-small cell lung cancer patients. Asian Pac J Cancer Prev. 2012;13:4413–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Dai L, Duan F, Wang P, Song C, Wang K, Zhang J. XRCC1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 case-control studies. Mol Biol Rep. 2012;39:9535–47.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang J, Zhang J, Zhao Y, Liao B, Liu J, Li L, et al. The Arg194Trp polymorphism in the XRCC1 gene and cancer risk in Chinese Mainland population: a meta-analysis. Mol Biol Rep. 2011;38:4565–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Haliassos A, Chomel JC, Tesson L, Baudis M, Kruh J, Kaplan JC, et al. Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res. 1989;17:3606.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yuan ZR, Li J, Li JY, Gao X, Xu SZ. SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene. Mol Biol Rep. 2013;40:7–12.CrossRefPubMedGoogle Scholar
  39. 39.
    Yuan ZR, Li JY, Li J, Zhang LP, Gao X, Gao HJ, et al. Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene. 2012;505:190–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Yuan ZR, Li JY, Li J, Gao X, Xu SZ. Effects of DGAT1 gene on meat and carcass fatness quality in Chinese commercial cattle. Mol Biol Rep. 2013;40:1947–54.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhao CJ, Li N, Deng XM. The establishment of method for identifying SNP genotype by CRS-PCR. Yi Chuan. 2003;25:327–9.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Li Wang
    • 1
  • Zhenhong Chen
    • 1
  • Yajuan Wang
    • 1
  • De Chang
    • 1
  • Longxiang Su
    • 1
  • Yinghua Guo
    • 1
  • Changting Liu
    • 1
  1. 1.Department of Nanlou Respiratory DiseasesThe Chinese PLA General HospitalBeijingChina

Personalised recommendations