Tumor Biology

, Volume 35, Issue 6, pp 5299–5305 | Cite as

Aberrant expression of DPPA2 and HIWI genes in colorectal cancer and their impacts on poor prognosis

  • Reza Raeisossadati
  • Mohammad Reza Abbaszadegan
  • Meysam Moghbeli
  • Alireza Tavassoli
  • Alexandre Hiroaki Kihara
  • Mohammad Mahdi ForghanifardEmail author
Research Article


Cancer cells have countless behaviors of pluripotent embryonic stem cells and germ line cells, such as unlimited proliferation, self-renewal, and migration. Expression of specific germ line and embryonic genes in tumor cells may be associated with indefinite growth and invasiveness of such cells. Developmental pluripotency factor 2 (DPPA2) and HIWI are two important developmental genes which are involved in embryonic and germ line stem cell properties. Deciphering the role of these genes seems to be necessary for understanding cancer initiation and progression. Tumoral and normal tissues from 46 colorectal cancer (CRC) patients were subjected to gene expression analysis using quantitative real-time reverse transcription-polymerase chain reaction, prior to any therapeutic intervention. Overexpression of DPPA2 and HIWI was detected in 26.1 and 34.8 % of specimens, respectively. Significant correlation between DPPA2 overexpression and lymph node metastasis of the tumor cells (P = 0.049) was seen in the samples with advanced stages (III/IV) of the tumor development. HIWI mRNA expression was significantly associated to the depth of tumor invasion (P = 0.020) and the stage of tumorigenesis progression (P = 0.030). In samples with overexpression of at least one gene, DPPA2 mRNA expression was significantly correlated to the stage of tumor (P = 0.017). In the same samples, a significant correlation was observed between mRNA expression of HIWI and the stage of tumor cells (P = 0.034). These results documented the important role of HIWI and DPPA2 in tumorigenesis and also in lymph node metastasis of tumor cells. Further evaluation is required to uncover the detailed role of HIWI and DPPA2 and their interactions in tumorigenesis of CRC.


Colorectal cancer DPPA2 HIWI Expressional analysis Real-time PCR 



The authors gratefully acknowledge colleagues at the Human Genetics Division of Avicenna Research Institute for their helps and technical supports.

Conflict of interest

The authors declare that they do not have any conflict of interest.


  1. 1.
    Pisani P, Parkin DM, Bray F, Ferlay J. Erratum: Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999;83:18–29. Int J Cancer. 1999;83(6):870–3.Google Scholar
  2. 2.
    Burt RW, DiSario JA, Cannon-Albright L. Genetics of colon cancer: impact of inheritance on colon cancer risk. Annu Rev Med. 1995;46:371–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J Clin. 2001;51(1):15–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Mousavi SM, Gouya MM, Ramazani R, Davanlou M, Hajsadeghi N, Seddighi Z. Cancer incidence and mortality in Iran. Ann Oncol. 2009;20(3):556–63.CrossRefPubMedGoogle Scholar
  5. 5.
    Raeisossadati R, Farshchian M, Ganji A, Tavassoli A, Velayati A, Dadkhah E, et al. Quantitative analysis of TEM-8 and CEA tumor markers indicating free tumor cells in the peripheral blood of colorectal cancer patients. Int J Colorectal Dis. 2012;26(10):1265–70.CrossRefGoogle Scholar
  6. 6.
    Yeh CS, Wang JY, Wu CH, Chong IW, Chung FY, Wang YH, et al. Molecular detection of circulating cancer cells in the peripheral blood of patients with colorectal cancer by using membrane array with a multiple mRNA marker panel. Int J Oncol. 2006;28(2):411–20.PubMedGoogle Scholar
  7. 7.
    Xu D, Li XF, Zheng S, Jiang WZ. Quantitative real-time RT-PCR detection for CEA, CK20 and CK19 mRNA in peripheral blood of colorectal cancer patients. J Zhejiang Univ Sci B. 2006;7(6):445–51.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Du J, Chen T, Zou X, Xiong B, Lu G. Dppa2 knockdown-induced differentiation and repressed proliferation of mouse embryonic stem cells. J Biochem. 2010;147(2):265–71.CrossRefPubMedGoogle Scholar
  9. 9.
    John T, Caballero OL, Svobodova SJ, Kong A, Chua R, Browning J, et al. ECSA/DPPA2 is an embryo-cancer antigen that is coexpressed with cancer-testis antigens in non-small cell lung cancer. Clin Cancer Res. 2008;14(11):3291–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Maldonado-Saldivia J, van den Bergen J, Krouskos M, Gilchrist M, Lee C, Li R, et al. Dppa2 and Dppa4 are closely linked SAP motif genes restricted to pluripotent cells and the germ line. Stem Cells. 2007;25(1):19–28.CrossRefPubMedGoogle Scholar
  11. 11.
    Aravind L, Koonin EV. SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci. 2000;25(3):112–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Monk M, Hitchins M, Hawes S. Differential expression of the embryo/cancer gene ECSA (DPPA2), the cancer/testis gene BORIS and the pluripotency structural gene OCT4, in human preimplantation development. Mol Hum Reprod. 2008;14(6):347–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene. 2001;20(56):8085–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development. 2003;130(8):1673–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998;12(23):3715–27.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Qiao D, Zeeman AM, Deng W, Looijenga LH, Lin H. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene. 2002;21(25):3988–99.CrossRefPubMedGoogle Scholar
  17. 17.
    Li S, Meng L, Zhu C, Wu L, Bai X, Wei J, et al. The universal overexpression of a cancer testis antigen hiwi is associated with cancer angiogenesis. Oncol Rep. 2010;23(4):1063–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci. 2000;25(10):481–2.CrossRefPubMedGoogle Scholar
  19. 19.
    Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM. Structure and conserved RNA binding of the PAZ domain. Nature. 2003;426(6965):468–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Grochola LF, Greither T, Taubert H, Moller P, Knippschild U, Udelnow A, et al. The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death. Br J Cancer. 2008;99(7):1083–8.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008;9(1):22–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Mol Cell. 2007;26(5):603–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, et al. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer. 2006;118(8):1922–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Sun G, Wang Y, Sun L, Luo H, Liu N, Fu Z, et al. Clinical significance of Hiwi gene expression in gliomas. Brain Res. 2011;1373:183–8.CrossRefPubMedGoogle Scholar
  25. 25.
    He W, Wang Z, Wang Q, Fan Q, Shou C, Wang J, et al. Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer. 2009;9:426.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Zhao YM, Zhou JM, Wang LR, He HW, Wang XL, Tao ZH, et al. HIWI is associated with prognosis in patients with hepatocellular carcinoma after curative resection. Cancer. 2012;118(10):2708–17.CrossRefPubMedGoogle Scholar
  27. 27.
    Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 2005;54(9):1283–6.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Hsieh JS, Lin SR, Chang MY, Chen FM, Lu CY, Huang TJ, et al. APC, K-ras, and p53 gene mutations in colorectal cancer patients: correlation to clinicopathologic features and postoperative surveillance. Am Surg. 2005;71(4):336–43.PubMedGoogle Scholar
  29. 29.
    Forghanifard MM, Moghbeli M, Raeisossadati R, Tavassoli A, Mallak AJ, Boroumand-Noughabi S, et al. Role of SALL4 in the progression and metastasis of colorectal cancer. J Biomed Sci. 2013;20(1):6.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Costa FF, Le Blanc K, Brodin B. Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells. 2007;25(3):707–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39(2):232–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu C, Qu L, Dong B, Xing X, Ren T, Zeng Y, et al. Combined phenotype of 4 markers improves prognostic value of patients with colon cancer. Am J Med Sci. 2012;343(4):295–302.CrossRefPubMedGoogle Scholar
  34. 34.
    Zeng Y, Qu LK, Meng L, Liu CY, Dong B, Xing XF, et al. HIWI expression profile in cancer cells and its prognostic value for patients with colorectal cancer. Chin Med J (Engl). 2011;124(14):2144–9.Google Scholar
  35. 35.
    Wang HL, Deng CS, Lin J, Pan DY, Zou ZY, Zhou XY. Expression of angiopoietin-2 is correlated with vascularization and tumor size in human colorectal adenocarcinoma. Tohoku J Exp Med. 2007;213(1):33–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Zadeh G, Guha A. Neoangiogenesis in human astrocytomas: expression and functional role of angiopoietins and their cognate receptors. Front Biosci. 2003;8:e128–37.CrossRefPubMedGoogle Scholar
  37. 37.
    Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, et al. Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology. 2003;37(5):1105–13.CrossRefPubMedGoogle Scholar
  38. 38.
    Staton CA, Chetwood AS, Cameron IC, Cross SS, Brown NJ, Reed MW. The angiogenic switch occurs at the adenoma stage of the adenoma carcinoma sequence in colorectal cancer. Gut. 2007;56(10):1426–32.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Lee JH, Jung C, Javadian-Elyaderani P, Schweyer S, Schutte D, Shoukier M, et al. Pathways of proliferation and antiapoptosis driven in breast cancer stem cells by stem cell protein piwil2. Cancer Res. 2010;70(11):4569–79.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang Y, Liu Y, Shen X, Zhang X, Chen X, Yang C, et al. The PIWI protein acts as a predictive marker for human gastric cancer. Int J Clin Exp Pathol. 2012;5(4):315–25.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Tchabo NE, Mhawech-Fauceglia P, Caballero OL, Villella J, Beck AF, Miliotto AJ, et al. Expression and serum immunoreactivity of developmentally restricted differentiation antigens in epithelial ovarian cancer. Cancer Immun. 2009;9:6.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Sharov AA, Masui S, Sharova LV, Piao Y, Aiba K, Matoba R, et al. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics. 2008;9:269.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Meng HM, Zheng P, Wang XY, Liu C, Sui HM, Wu SJ et al. Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther. 9(4).Google Scholar
  44. 44.
    Gazouli M, Roubelakis MG, Theodoropoulos GE, Papailiou J, Vaiopoulou A, Pappa KI, et al. OCT4 spliced variant OCT4B1 is expressed in human colorectal cancer. Mol Carcinog. 2012;51(2):165–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Xu F, Dai C, Zhang R, Zhao Y, Peng S, Jia C. Nanog: a potential biomarker for liver metastasis of colorectal cancer. Dig Dis Sci. 2012;57(9):2340–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Liekens AM, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J. BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol. 2011;12(6):R57.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Reza Raeisossadati
    • 1
  • Mohammad Reza Abbaszadegan
    • 1
    • 3
  • Meysam Moghbeli
    • 1
  • Alireza Tavassoli
    • 4
  • Alexandre Hiroaki Kihara
    • 2
  • Mohammad Mahdi Forghanifard
    • 5
    Email author
  1. 1.Division of Human Genetics, Immunology Research Center, Avicenna Research InstituteMashhad University of Medical SciencesMashhadIran
  2. 2.Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e CogniçãoUniversidade Federal do ABCSanto AndreBrazil
  3. 3.Medical Genetics Research Center, Medical SchoolMashhad University of Medical SciencesMashhadIran
  4. 4.Endoscopic and Minimally Invasive Research CenterQaem HospitalMashhadIran
  5. 5.Department of BiologyDamghan Branch, Islamic Azad UniversityDamghanIran

Personalised recommendations