Advertisement

Tumor Biology

, Volume 35, Issue 5, pp 4457–4468 | Cite as

Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues

  • Songmi Noh
  • Do Hee Kim
  • Woo Hee Jung
  • Ja Seung KooEmail author
Research Article

Abstract

To evaluate the expression levels of serine/glycine metabolism-related proteins (PHGDH, PSAT, PSPH, SHMT, and GLDC) in six different subtypes of triple negative breast cancer (TNBC) patients and gain insight into their implications. Formalin-fixed, paraffin-embedded tissues from 129 TNBC patients were assembled into tissue microarrays. Immunohistochemical staining was performed for serine/glycine metabolism-related proteins (PHGDH, PSAT, PSPH, SHMT, and GLDC) and surrogate immunohistochemical markers (CK5/6, EGFR, claudin 3, claudin 4, claudin 7, E-cadherin, STAT1, interleukin-8 [IL-8], AR, and GGT-1) for identifying the molecular subtype of TNBC. TNBC subtype classifications included the following: basal-like (CK5/6-positive and/or EGFR-positive), molecular apocrine (AR-positive and/or GGT-1-positive), claudin-low (claudin 3-, claudin 4-, claudin 7-negative and/or E-cadherin-negative), immune-related (IL-8-negative and stromal STAT1-positive), mixed (features from two or more of the four subtypes), and null (no features from any of the four subtypes). Tissues from basal marker-positive patients showed increased expression levels of tumoral PHGDH compared with those from basal marker-negative patients (p = 0.029); lack of stromal SHMT1 expression was significantly correlated with T stage (p = 0.016). Multivariate Cox analysis revealed that a lack of stromal SHMT1 expression was an independent prognostic factor for predicting a shorter disease-free survival period (hazard ratio 4.002, 95 % confidence interval [CI] 1.077–14.83, p = 0.038); furthermore, a lack of tumoral PHGDH expression was predictive of a shorter overall survival rate (hazard ratio 3.053, 95 % CI 1.002–9.305, p = 0.050). In conclusion, the most abundantly expressed serine/glycine metabolism-related protein in basal-like TNBC tissues was tumoral PHGDH, and expression levels of stromal SHMT1 and tumoral PHGDH were inversely correlated with clinical prognostic factors. Also, this study is the first to assess serine/glycine relationships at the protein level in regards to clinical outcomes.

Key word

Glycine Serine Metabolism Triple negative 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1002886). This study was supported by a faculty research grant from Yonsei University College of Medicine for 2013 (6-2013-0146).

Conflicts of interest

No potential conflicts of interest were disclosed.

Supplementary material

13277_2013_1588_MOESM1_ESM.doc (88 kb)
ESM 1 (DOC 87 kb)
13277_2013_1588_MOESM2_ESM.doc (88 kb)
ESM 2 (DOC 88 kb)
13277_2013_1588_MOESM3_ESM.doc (76 kb)
ESM 3 (DOC 76 kb)
13277_2013_1588_MOESM4_ESM.doc (76 kb)
ESM 4 (DOC 76 kb)

References

  1. 1.
    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336:1040–4.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mullarky E, Mattaini KR, Vander Heiden MG, Cantley LC, Locasale JW. PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell Melanoma Res. 2011;24:1112–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476:346–50.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16 Suppl 1:61–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, et al. GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol. 2011;26:1279–86.PubMedGoogle Scholar
  9. 9.
    Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2013;80:41–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.CrossRefPubMedGoogle Scholar
  12. 12.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancerI. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Won KY, Kim GY, Kim YW, Song JY, Lim SJ. Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum Pathol. 2010;41:107–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, et al. Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9:3506–14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9:3256–76.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation. Cell Cycle. 2010;9:2201–19.CrossRefPubMedGoogle Scholar
  17. 17.
    Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001.CrossRefPubMedGoogle Scholar
  18. 18.
    Stackhouse BL, Williams H, Berry P, Russell G, Thompson P, Winter JL, et al. Measurement of glut-1 expression using tissue microarrays to determine a race specific prognostic marker for breast cancer. Breast Cancer Res Treat. 2005;93:247–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R. GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res. 1995;15:2895–8.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Songmi Noh
    • 1
    • 2
  • Do Hee Kim
    • 2
  • Woo Hee Jung
    • 2
  • Ja Seung Koo
    • 2
    Email author
  1. 1.Department of Pathology, CHA Gangnam Medical CenterCHA UniversitySeoulSouth Korea
  2. 2.Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulSouth Korea

Personalised recommendations