Tumor Biology

, Volume 35, Issue 5, pp 3945–3951 | Cite as

The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment



Despite recent progresses in tumor therapy and increased knowledge in tumor biology, tumor remains a common and lethal disease worldwide. Cancer stem cells (CSCs) are a subset of cancer cells with a stem cell-like ability, which may drive tumor growth and recurrence and are resistant to many current anticancer treatments. Solid tumors are regarded as “organs” which are comprised of cancer cells and the tumor stroma. The tumor microenvironment makes up the stroma of the tumor, which occupies the majority of the tumor mass, including the extracellular matrix (ECM), mesenchymal stem cells (MSCs), endothelial cells, immune cells, and, what is more, networks of cytokines and growth factors. The microenvironment or niche surrounding CSCs largely governs their cellular fate. Recent work has revealed that the microenvironment supports CSC self-renewal and simultaneously serves as a physical barrier to drug delivery. The tumor microenvironment plays pivotal roles in each stage of tumor development. Knowledge about the interactions of CSCs with their microenvironment would seem to be of most importance for developing new treatment strategies.


Cancer stem cells Tumor microenvironment Extracellular matrix Hypoxia Exosomes 



This work was supported by grants from the National Natural Science Foundation of China (no. 91019005, no. 81272672) and Zhejiang Provincial Natural Science Foundation of China (no. Y2110034).


  1. 1.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMedGoogle Scholar
  5. 5.
    Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annual Rev Med. 2007;58:267–84.CrossRefGoogle Scholar
  6. 6.
    Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124:1111–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008;331:57–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011;121:3804–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–78.CrossRefPubMedGoogle Scholar
  10. 10.
    Xie T, Li L. Stem cells and their niche: an inseparable relationship. Development. 2007;134:2001–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Li L, Cole J, Margolin DA. Cancer stem cell and stromal microenvironment. Ochsner J. 2013;13:109–18.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology 2011;3. doi:10.1101/cshperspect.a005058.Google Scholar
  14. 14.
    Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer. 2013;108:755–61.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71:614–24.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PloS One. 2012;7:e45590.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adhes Migr. 2012;6:220–30.CrossRefGoogle Scholar
  19. 19.
    Nishimura K, Semba S, Aoyagi K, Sasaki H, Yokozaki H. Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiol : J Immunopathol, Mol Cell Biol. 2012;79:290–306.CrossRefGoogle Scholar
  20. 20.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Jinushi M, Baghdadi M, Chiba S, Yoshiyama H. Regulation of cancer stem cell activities by tumor-associated macrophages. Am J Cancer Res. 2012;2:529–39.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67:3560–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res. 2010;70:9969–78.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013;23:171–85.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sigurdsson V, Hilmarsdottir B, Sigmundsdottir H, Fridriksdottir AJ, Ringner M, Villadsen R, et al. Endothelial induced EMT in breast epithelial cells with stem cell properties. PloS One. 2011;6:e23833.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73:1128–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol. 2012;189:444–53.CrossRefPubMedGoogle Scholar
  31. 31.
    Yu X, Li H, Ren X. Interaction between regulatory T cells and cancer stem cells. Int J Cancer J Int du Cancer. 2012;131:1491–8.CrossRefGoogle Scholar
  32. 32.
    Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Investig. 2010;120:485–97.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig. 2007;117:3988–4002.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ma Y, Liang D, Liu J, Axcrona K, Kvalheim G, Giercksky KE, et al. Synergistic effect of SCF and G-CSF on stem-like properties in prostate cancer cell lines. Tumour Biol : J Int Soc Oncodevelopmental Biol Med. 2012;33:967–78.CrossRefGoogle Scholar
  35. 35.
    Yi SY, Hao YB, Nan KJ, Fan TL. Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev. 2012;39:290–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene. 1999;18:5356–62.CrossRefPubMedGoogle Scholar
  37. 37.
    Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J. 2013;2013:417413.Google Scholar
  38. 38.
    Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, et al. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PloS One. 2013;8:e60687.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ye J, Wu D, Shen J, Wu P, Ni C, Chen J, et al. Enrichment of colorectal cancer stem cells through epithelial–mesenchymal transition via CDH1 knockdown. Mol Med Rep. 2012;6:507–12.PubMedGoogle Scholar
  40. 40.
    Heldin CH, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012;586:1959–70.CrossRefPubMedGoogle Scholar
  41. 41.
    Smith AL, Robin TP, Ford HL. Molecular pathways: targeting the TGF-β pathway for cancer therapy. Clin Cancer Res : Off J Am Assoc Cancer Res. 2012;18:4514–21.CrossRefGoogle Scholar
  42. 42.
    Siefert SA, Sarkar R. Matrix metalloproteinases in vascular physiology and disease. Vascular. 2012;20:210–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Noel A, Gutierrez-Fernandez A, Sounni NE, Behrendt N, Maquoi E, Lund IK, et al. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol. 2012;3:140.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Justilien V, Regala RP, Tseng IC, Walsh MP, Batra J, Radisky ES, et al. Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PloS One. 2012;7:e35040.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene. 2013. doi:10.1038/onc.2013.121Google Scholar
  46. 46.
    Li P, Zhou C, Xu L, Xiao H. Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study. Int J Med Sci. 2013;10:399–407.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, et al. Hypoxia potentiates glioma-mediated immunosuppression. PloS One. 2011;6:e16195.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res : Off J Am Assoc Cancer Res. 2012;18:4266–76.CrossRefGoogle Scholar
  49. 49.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.CrossRefPubMedGoogle Scholar
  50. 50.
    Kuwai T, Kitadai Y, Tanaka S, Onogawa S, Matsutani N, Kaio E, et al. Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer J Int du Cancer. 2003;105:176–81.CrossRefGoogle Scholar
  51. 51.
    Gammon L, Biddle A, Heywood HK, Johannessen AC, Mackenzie IC. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PloS One. 2013;8:e62493.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kappler M, Taubert H, Schubert J, Vordermark D, Eckert AW. The real face of HIF1α in the tumor process. Cell Cycle. 2012;11:3932–6.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8:3274–84.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer cell. 2009;15:501–13.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig. 2013;123:189–205.CrossRefPubMedGoogle Scholar
  56. 56.
    Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14:2348–60.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jaiswal R, Luk F, Gong J, Mathys JM, Grau GE, Bebawy M. Microparticle conferred microRNA profiles—implications in the transfer and dominance of cancer traits. Mol Cancer. 2012;11:37.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Science. 2010;123:1603–11.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jaiswal R, Luk F, Dalla PV, Grau GE, Bebawy M. Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PloS One. 2013;8:e61515.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Xu XT, Xu Q, Tong JL, Zhu MM, Nie F, Chen X, et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. British J Cancer. 2012;106:1320–30.CrossRefGoogle Scholar
  62. 62.
    Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, et al. miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707.CrossRefPubMedGoogle Scholar
  63. 63.
    Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279:2047–59.CrossRefPubMedGoogle Scholar
  64. 64.
    Lo WL, Yu CC, Chiou GY, Chen YW, Huang PI, Chien CS, et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol. 2011;223:482–95.CrossRefPubMedGoogle Scholar
  65. 65.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leuk : Off J Leukemia Soc Am, Leuk Res Fund, UK. 2006;20:1487–95.CrossRefGoogle Scholar
  66. 66.
    Yang M, Chen J, Su F, Yu B, Lin L, Liu Y, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial–mesenchymal transition. PloS One. 2012;7:e43272.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Fabbri M. TLRs as miRNA receptors. Cancer Res. 2012;72:6333–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of microRNAs by embryonic stem cell microvesicles. PloS One. 2009;4:e4722.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104:3257–66.CrossRefPubMedGoogle Scholar
  71. 71.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119:756–66.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Chumsri S, Phatak P, Edelman MJ, Khakpour N, Hamburger AW, Burger AM. Cancer stem cells and individualized therapy. Cancer Genomics Proteomics. 2007;4:165–74.PubMedGoogle Scholar
  73. 73.
    Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells. 2012;30:363–71.CrossRefPubMedGoogle Scholar
  74. 74.
    Sottoriva A, Sloot PM, Medema JP, Vermeulen L. Exploring cancer stem cell niche directed tumor growth. Cell Cycle. 2010;9:1472–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Ni C, Huang J. Dynamic regulation of cancer stem cells and clinical challenges. Clin Transl Oncol : Off Publ Fed Span Oncol Soc Nat Cancer Inst Mex. 2013;15:253–8.CrossRefGoogle Scholar
  76. 76.
    Gu JW, Rizzo P, Pannuti A, Golde T, Osborne B, Miele L. Notch signals in the endothelium and cancer “stem-like” cells: opportunities for cancer therapy. Vasc Cell. 2012;4:7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Gastroenterology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations